Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3731-3744.DOI: 10.16085/j.issn.1000-6613.2021-1806
• Materials science and technology • Previous Articles Next Articles
ZHANG Lizhu1(), WANG Huan2(), LI Qiong1, YANG Dongjie1()
Received:
2021-08-22
Revised:
2022-01-19
Online:
2022-07-23
Published:
2022-07-25
Contact:
WANG Huan,YANG Dongjie
通讯作者:
王欢,杨东杰
作者简介:
张丽珠(1997—),女,硕士研究生。E-mail: 基金资助:
CLC Number:
ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744.
张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1806
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
亚甲基蓝 | 80%乙醇不溶木质素 | 396.9 | [ |
亚甲基蓝 | 柠檬酸改性磁性介孔木质素基吸附剂 | 339.4 | [ |
亚甲基蓝 | 酚化改性交联木质素基吸附剂 | 99.4 | [ |
亚甲基蓝 | GO/碱木质素气凝胶 | 1185.9 | [ |
孔雀石绿 | GO/胺化木质素气凝胶 | 113.5 | [ |
亚甲基蓝 | 磺化木质素水凝胶 | 495 | [ |
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
亚甲基蓝 | 80%乙醇不溶木质素 | 396.9 | [ |
亚甲基蓝 | 柠檬酸改性磁性介孔木质素基吸附剂 | 339.4 | [ |
亚甲基蓝 | 酚化改性交联木质素基吸附剂 | 99.4 | [ |
亚甲基蓝 | GO/碱木质素气凝胶 | 1185.9 | [ |
孔雀石绿 | GO/胺化木质素气凝胶 | 113.5 | [ |
亚甲基蓝 | 磺化木质素水凝胶 | 495 | [ |
吸附质 | 原料 | 制备/改性方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
亚甲基蓝 | 酶解木质素 | Fe3O4模板炭化 | 16.4 | 621.5 | [ |
亚甲基蓝 | 酸水解分馏的低硫木质素 | 磷酸浸渍活化 | >2000 | 535.0 | [ |
亚甲基蓝 | 木质素磺酸钠 | 角叉菜胶模板凝胶-KOH炭化活化 | 594.6 | 421.9 | [ |
罗丹明B | 碱木质素 | 溶液冻干-300℃低温退火 | — | 156.4 | [ |
甲基橙 | 木质素 | 甲醛交联木质素-铁源复合-炭化 | — | 去除率97.7% | [ |
甲基橙 | 木质素 | 共沉淀复合-炭化法 | — | 113.0 | [ |
吸附质 | 原料 | 制备/改性方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
亚甲基蓝 | 酶解木质素 | Fe3O4模板炭化 | 16.4 | 621.5 | [ |
亚甲基蓝 | 酸水解分馏的低硫木质素 | 磷酸浸渍活化 | >2000 | 535.0 | [ |
亚甲基蓝 | 木质素磺酸钠 | 角叉菜胶模板凝胶-KOH炭化活化 | 594.6 | 421.9 | [ |
罗丹明B | 碱木质素 | 溶液冻干-300℃低温退火 | — | 156.4 | [ |
甲基橙 | 木质素 | 甲醛交联木质素-铁源复合-炭化 | — | 去除率97.7% | [ |
甲基橙 | 木质素 | 共沉淀复合-炭化法 | — | 113.0 | [ |
吸附质 | 原料 | 改性/制备方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
氯霉素 | 木质素磺酸钠 | 埃洛石模板-KOH活化 | 2320 | 1297.0 | [ |
磺胺二甲基嘧啶 | 木质酸磺酸钠 | SiO2模板-KOH活化 | 2784 | 869.6 | [ |
四环素 | 木质素磺酸钠 | NaCl模板-KOH活化 | 3505 | 1613.0 | [ |
环丙沙星 | 木质素磺酸钠 | GO模板-KOH活化 | 3223 | 980.4 | [ |
双氯芬酸 | 松木提取木质素 | 硫酸氧化- K2FeO4活化 | 457.4 | 159.7 | [ |
扑热息痛 | 硫酸盐黑液 | 单宁缩聚-水热交联-热解 | 101.0 | 73.6 | [ |
氟西汀 | 硫酸盐制浆初级污泥 | KOH活化 | 115 | 191.6 | [ |
吸附质 | 原料 | 改性/制备方法 | 比表面积/m2·g-1 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
氯霉素 | 木质素磺酸钠 | 埃洛石模板-KOH活化 | 2320 | 1297.0 | [ |
磺胺二甲基嘧啶 | 木质酸磺酸钠 | SiO2模板-KOH活化 | 2784 | 869.6 | [ |
四环素 | 木质素磺酸钠 | NaCl模板-KOH活化 | 3505 | 1613.0 | [ |
环丙沙星 | 木质素磺酸钠 | GO模板-KOH活化 | 3223 | 980.4 | [ |
双氯芬酸 | 松木提取木质素 | 硫酸氧化- K2FeO4活化 | 457.4 | 159.7 | [ |
扑热息痛 | 硫酸盐黑液 | 单宁缩聚-水热交联-热解 | 101.0 | 73.6 | [ |
氟西汀 | 硫酸盐制浆初级污泥 | KOH活化 | 115 | 191.6 | [ |
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
Pb2+ | 交联羧甲基木质素 | 302.3 | [ |
Cu2+ | 二硫代氨基甲酸酯改性木质素 | 175.9 | [ |
Ni2+ | 聚乙烯亚胺接枝硫酸盐木质素微球 | 49.4 | [ |
Cd2+ | 聚乙烯亚胺接枝木质素颗粒 | 54.3 | [ |
Pb2+ | 冠醚官能化木质素 | 91.4 | [ |
As (Ⅴ) | 三亚乙基四胺改性木质素 | 62.5 | [ |
Cr (Ⅵ) | 木质素磺酸盐/N-甲基苯胺复合物 | 1264.8 | [ |
吸附质 | 吸附剂 | 最大吸附量Q/mg·g-1 | 参考文献 |
---|---|---|---|
Pb2+ | 交联羧甲基木质素 | 302.3 | [ |
Cu2+ | 二硫代氨基甲酸酯改性木质素 | 175.9 | [ |
Ni2+ | 聚乙烯亚胺接枝硫酸盐木质素微球 | 49.4 | [ |
Cd2+ | 聚乙烯亚胺接枝木质素颗粒 | 54.3 | [ |
Pb2+ | 冠醚官能化木质素 | 91.4 | [ |
As (Ⅴ) | 三亚乙基四胺改性木质素 | 62.5 | [ |
Cr (Ⅵ) | 木质素磺酸盐/N-甲基苯胺复合物 | 1264.8 | [ |
类别 | 吸附剂 | 污染物 | 吸附容量 /mg·g-1 | 主要吸附机理 | 优缺点 | 参考文献 |
---|---|---|---|---|---|---|
木质素吸附剂 | GO/碱木质素气凝胶 | 亚甲基蓝 | 1185.9 | 氢键、π-π相互作用 | 原料可再生且来源广泛,易于修饰改性、制备功能化吸附材料 | [ |
交联羧甲基木质素 | Pb2+ | 302.3 | 羧基的离子交换 | [ | ||
二硫代氨基甲酸酯改性木质素 | Cu2+ | 175.9 | — | [ | ||
磷酸化碱木质素微球 | 左氧氟沙星、Pb2+ | 389.1、249.2 | 氢键、π-π相互作用、静电吸引、阳离子-π相互作用 | [ | ||
木质素多孔炭吸附剂 | 磷酸活化木质素多孔炭 | 亚甲基蓝 | 535.0 | — | 原料易得,碳产率高,材料结构可调控,吸附容量高 | [ |
模板炭化-活化木质素多孔炭 | 氯霉素 | 1297.0 | 氢键、π-π相互作用、范德华力 | [ | ||
层状木质素多孔炭 | Pb2+ | 250.5 | 静电吸引、络合作用、沉淀作用 | [ | ||
天然/半合成 高分子吸附剂 | 改性壳聚糖 | Cu2+、Cr6+ | 165.2、108.2 | 静电吸引 | 原料成本低、绿色、易生物降解;吸附容量较小 | [ |
纤维壳聚糖/纤维素复合材料 | Co2+ | 23.6 | — | [ | ||
β-环糊精-壳聚糖基交联吸附剂 | Hg (Ⅱ)、亚甲基蓝 | 178.3、 162.6 | 络合作用、氢键 | [ | ||
矿物类吸附剂 | 羟基磷灰石接枝磁性 膨润土 | Pb2+、Cd2+ | 482、309 | 静电吸引、络合作用、氢键 | 来源广泛、廉价;不易重复利用、吸附效率低 | [ |
酸改性高岭土 | Cu2+ | 38.7 | 静电吸引、沉淀作用 | [ | ||
氨基改性凹凸棒 | Pb2+、Cu2+ | 48.7、46.3 | 离子交换、静电作用 | [ | ||
合成高聚物 吸附剂 | 超支化聚氨酯 | Pb2+、Ni2+ | 236.5、217.5 | 络合作用 | 性质稳定,易于功能化改性;以不可再生的石化产品为原料,成本高 | [ |
三嗪基交联多胺树脂 | 甲基橙 | 620.5 | 氢键、静电吸引、疏水/ π-π相互作用 | [ | ||
磁性介孔间苯二酚-三聚氰胺-甲醛树脂 | 苯酚 | 243.3 | 氢键、疏水/π-π相互作用 | [ | ||
活性炭 | 椰壳活性炭 | 孔雀石绿 | 83.1 | 氢键、范德华力 | 吸附容量大;主要使用硬煤为原料,制备成本较高,不易再生利用 | [ |
沥青质多孔炭 | 亚甲基蓝 | 556.0 | — | [ | ||
核桃壳活性炭 | 刚果红 | 632 | — | [ | ||
氧化沥青基介孔炭 | 孔雀石绿、Pb2+ | 963.1、198.6 | π-π相互作用、氢键、络合作用、静电吸引 | [ | ||
生物质炭 | 玉米秸秆生物质炭 | Cd2+ | 73.22 | 阳离子-π相互作用、离子交换、沉淀作用 | 利用农林废弃物,原料成本低,制备简单;原料成分复杂,材料不均匀 | [ |
香蕉皮生物炭 | Pb2+、Cu2+ | 247.1、75.99 | 静电吸引、离子交换、沉淀作用、范德华力 | [ | ||
活性松木生物质炭 | 四环素 | 959.9 | 氢键、π-π相互作用 | [ | ||
核桃壳生物质炭 | 活性红141 | 130 | — | [ |
类别 | 吸附剂 | 污染物 | 吸附容量 /mg·g-1 | 主要吸附机理 | 优缺点 | 参考文献 |
---|---|---|---|---|---|---|
木质素吸附剂 | GO/碱木质素气凝胶 | 亚甲基蓝 | 1185.9 | 氢键、π-π相互作用 | 原料可再生且来源广泛,易于修饰改性、制备功能化吸附材料 | [ |
交联羧甲基木质素 | Pb2+ | 302.3 | 羧基的离子交换 | [ | ||
二硫代氨基甲酸酯改性木质素 | Cu2+ | 175.9 | — | [ | ||
磷酸化碱木质素微球 | 左氧氟沙星、Pb2+ | 389.1、249.2 | 氢键、π-π相互作用、静电吸引、阳离子-π相互作用 | [ | ||
木质素多孔炭吸附剂 | 磷酸活化木质素多孔炭 | 亚甲基蓝 | 535.0 | — | 原料易得,碳产率高,材料结构可调控,吸附容量高 | [ |
模板炭化-活化木质素多孔炭 | 氯霉素 | 1297.0 | 氢键、π-π相互作用、范德华力 | [ | ||
层状木质素多孔炭 | Pb2+ | 250.5 | 静电吸引、络合作用、沉淀作用 | [ | ||
天然/半合成 高分子吸附剂 | 改性壳聚糖 | Cu2+、Cr6+ | 165.2、108.2 | 静电吸引 | 原料成本低、绿色、易生物降解;吸附容量较小 | [ |
纤维壳聚糖/纤维素复合材料 | Co2+ | 23.6 | — | [ | ||
β-环糊精-壳聚糖基交联吸附剂 | Hg (Ⅱ)、亚甲基蓝 | 178.3、 162.6 | 络合作用、氢键 | [ | ||
矿物类吸附剂 | 羟基磷灰石接枝磁性 膨润土 | Pb2+、Cd2+ | 482、309 | 静电吸引、络合作用、氢键 | 来源广泛、廉价;不易重复利用、吸附效率低 | [ |
酸改性高岭土 | Cu2+ | 38.7 | 静电吸引、沉淀作用 | [ | ||
氨基改性凹凸棒 | Pb2+、Cu2+ | 48.7、46.3 | 离子交换、静电作用 | [ | ||
合成高聚物 吸附剂 | 超支化聚氨酯 | Pb2+、Ni2+ | 236.5、217.5 | 络合作用 | 性质稳定,易于功能化改性;以不可再生的石化产品为原料,成本高 | [ |
三嗪基交联多胺树脂 | 甲基橙 | 620.5 | 氢键、静电吸引、疏水/ π-π相互作用 | [ | ||
磁性介孔间苯二酚-三聚氰胺-甲醛树脂 | 苯酚 | 243.3 | 氢键、疏水/π-π相互作用 | [ | ||
活性炭 | 椰壳活性炭 | 孔雀石绿 | 83.1 | 氢键、范德华力 | 吸附容量大;主要使用硬煤为原料,制备成本较高,不易再生利用 | [ |
沥青质多孔炭 | 亚甲基蓝 | 556.0 | — | [ | ||
核桃壳活性炭 | 刚果红 | 632 | — | [ | ||
氧化沥青基介孔炭 | 孔雀石绿、Pb2+ | 963.1、198.6 | π-π相互作用、氢键、络合作用、静电吸引 | [ | ||
生物质炭 | 玉米秸秆生物质炭 | Cd2+ | 73.22 | 阳离子-π相互作用、离子交换、沉淀作用 | 利用农林废弃物,原料成本低,制备简单;原料成分复杂,材料不均匀 | [ |
香蕉皮生物炭 | Pb2+、Cu2+ | 247.1、75.99 | 静电吸引、离子交换、沉淀作用、范德华力 | [ | ||
活性松木生物质炭 | 四环素 | 959.9 | 氢键、π-π相互作用 | [ | ||
核桃壳生物质炭 | 活性红141 | 130 | — | [ |
104 | HAN Zhenwei, KONG Shunli, CHENG Jing, et al. Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14785-14794. |
105 | CRINI G, LICHTFOUSE E, WILSON L D, et al. Conventional and non-conventional adsorbents for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 195-213. |
106 | WANG Rongzhong, HUANG Danlian, LIU Yunguo, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261: 265-271. |
107 | AHMAD Z, GAO Bin, MOSA A, et al. Removal of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. |
108 | DAI Yingjie, ZHANG Naixin, XING Chuanming, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review[J]. Chemosphere, 2019, 223: 12-27. |
109 | GONG Lang, WU Hongye, SHAN Xiangyi, et al. Facile fabrication of phosphorylated alkali lignin microparticles for efficient adsorption of antibiotics and heavy metal ions in water[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106574. |
110 | WANG Anqi, ZHENG Zhikeng, LI Ruiqi, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
111 | LI Zichao, HANAFY H, ZHANG Lei, et al. Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations[J]. Chemical Engineering Journal, 2020, 388: 124263. |
112 | ZHANG Xialan, LIN Qilang, LUO Shiyuan, et al. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion[J]. Applied Surface Science, 2018, 442: 322-331. |
113 | JANG H M, YOO S, CHOI Y K, et al. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar[J]. Bioresource Technology, 2018, 259: 24-31. |
1 | LU Yun, SUN Qingfeng, YANG Dongjiang, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry, 2012, 22(27): 13548. |
2 | FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269. |
3 | SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
4 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
5 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of ligin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
6 | JIANG Chenglong, WANG Xiaohong, QIN Demeng, et al. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes[J]. Journal of Hazardous Materials, 2019, 369: 50-61. |
7 | LIU Shuang, WEI Wenguang, WU Shubin, et al. Preparation of hierarchical porous activated carbons from different industrial lignin for highly efficient adsorption performance[J]. Journal of Porous Materials, 2020, 27(5): 1523-1533. |
8 | KRASUCKA P, PAN Bo, SIK OK Y, et al. Engineered biochar —A sustainable solution for the removal of antibiotics from water[J]. Chemical Engineering Journal, 2021, 405: 126926. |
114 | ZAZYCKI M A, GODINHO M, PERONDI D, et al. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 57-65. |
9 | XIANG Yujia, XU Zhangyi, WEI Yuyi, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138. |
10 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
WANG Shuai, GAN Linhuo, Li LYU. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729. | |
11 | LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: towards biobased polymers[J]. Progress in Polymer Science, 2014, 39(7): 1266-1290. |
12 | JOFFRES B, LAURENTI D, CHARON N, et al. Thermochemical conversion of lignin for fuels and chemicals: a review[J]. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 2013, 68(4): 753-763. |
13 | CHATTERJEE S, CLINGENPEEL A, MCKENNA A, et al. Synthesis and characterization of lignin-based carbon materials with tunable microstructure[J]. RSC Adv., 2014, 4(9): 4743-4753. |
14 | TOOR M, KUMAR S S, MALYAN S K, et al. An overview on bioethanol production from lignocellulosic feedstocks[J]. Chemosphere, 2020, 242: 125080. |
15 | ZHANG Hao, ZHOU Haifeng. Industrial lignins: The potential for efficient removal of Cr(Ⅵ) from wastewater[J]. Environmental Science and Pollution Research, 2022, 29(7): 10467-10481. |
16 | JIN Yanqiao, CHENG Xiansu, ZHENG Zuanbin. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin[J]. Bioresource Technology, 2010, 101(6): 2046-2048. |
17 | LI Hao, YUAN Ze, XING Yuyu, et al. Acetone fractionation: a simple and efficient method to improve the performance of lignin for dye pollutant removal[J]. RSC Advances, 2019, 9(61): 35895-35903. |
18 | DAI Kun, ZHAO Gulin, KOU Jingwei, et al. Magnetic mesoporous sodium citrate modified lignin for improved adsorption of calcium ions and methylene blue from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105180. |
19 | ZHAO Wenwen, XIAO Lingping, SONG Guoyong, et al. From lignin subunits to aggregates: insights into lignin solubilization[J]. Green Chemistry, 2017, 19(14): 3272-3281. |
20 | SUI Wenjie, PANG Tairan, WANG Guanhua, et al. Stepwise ethanol-water fractionation of enzymatic hydrolysis lignin to improve its performance as a cationic dye adsorbent[J]. Molecules, 2020, 25(11): 2603. |
21 | WANG Qiaorui, ZHENG Chunli, SHEN Zhenxing, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359: 265-274. |
22 | SHI Xiaofeng, HONG Junmao, LI Junhua, et al. Excellent selectivity and high capacity of As (Ⅴ) removal by a novel lignin-based adsorbent doped with N element and modified with Ca2+ [J]. International Journal of Biological Macromolecules, 2021, 172: 299-308. |
23 | SHI Xiaofeng, WANG Chao, DONG Binbin, et al. Cu/N doped lignin for highly selective efficient removal of As(Ⅴ) from polluted water[J]. International Journal of Biological Macromolecules, 2020, 161: 147-154. |
24 | LI Yinliang, WU Miao, WANG Bo, et al. Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5523-5532. |
25 | KWAK H W, LEE H, LEE K H. Surface-modified spherical lignin particles with superior Cr (Ⅵ) removal efficiency[J]. Chemosphere, 2020, 239: 124733. |
26 | KLAPISZEWSKI Ł, SIWIŃSKA-STEFAŃSKA K, KOŁODYŃSKA D. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 314: 169-181. |
27 | XIAO Yali, DING Mingjie, WANG Ruijia, et al. Fabrication of mesoporous SiO2@SLS composite to remove organic pollutants: hydrogen bond-induced intriguing changes of solubility[J]. Journal of Nanoparticle Research, 2019, 21(1): 1-12. |
28 | ZHANG Yongchao, NI Shuzhen, WANG Xiaoju, et al. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles[J]. Chemical Engineering Journal, 2019, 372: 82-91. |
29 | ZHAO Yumeng, SHAN Xiangcheng, AN Qingda, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398: 125561. |
30 | ZHAI Rui, HU Jinguang, CHEN Xiangxue, et al. Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal[J]. Bioresource Technology, 2020, 315: 123846. |
31 | WU Linjun, HUANG Siqi, ZHENG Jia, et al. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel[J]. International Journal of Biological Macromolecules, 2019, 140: 538-545. |
32 | TAHARI N, DE HOYOS-MARTINEZ P L, ABDERRABBA M, et al. Lignin-montmorillonite hydrogels as toluene adsorbent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125108. |
33 | MENG Yi, LI Chengxiang, LIU Xueqian, et al. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water[J]. Science of the Total Environment, 2019, 685: 847-855. |
34 | YAN Mingfang, HUANG Wenxing, LI Zhili. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water[J]. International Journal of Biological Macromolecules, 2019, 136: 927-935. |
35 | CHEN FENGGUI, HU XI, TU XIAOHAN, et al. High-yield production of lignin-derived functional carbon nanosheet for dye adsorption[J]. Polymers, 2020, 12(4): 797. |
36 | GENG Shiyu, WEI Jiayuan, JONASSON S, et al. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7432-7441. |
37 | COTORUELO L M, MARQUÉS M D, DÍAZ F J, et al. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions[J]. Chemical Engineering Journal, 2012, 184: 176-183. |
38 | FU Kaifang, YUE Qinyan, GAO Baoyu, et al. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation[J]. Chemical Engineering Journal, 2013, 228: 1074-1082. |
39 | ZHANG Liming, YOU Tingting, ZHOU Tian, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
40 | SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
41 | DAI Jiangdong, XIE Atian, ZHANG Ruilong, et al. Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic[J]. Journal of Molecular Liquids, 2018, 256: 203-212. |
42 | ZHANG Binpeng, YANG Dongjie, QIU Xueqing, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
43 | AGO M, BORGHEI M, HAATAJA J S, et al. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes[J]. RSC Advances, 2016, 6(89): 85802-85810. |
44 | SAHA D, WARREN K E, NASKAR A K. Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014, 71: 47-57. |
45 | LIU Ruilin, LIU Yu, ZHOU Xinyu, et al. Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue[J]. Bioresource Technology, 2014, 154: 138-147. |
46 | QIN Hengfei, JIAN Ruihong, BAI Jirong, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
47 | VALERO-ROMERO M J, MÁRQUEZ-FRANCO E M, BEDIA J, et al. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution[J]. Microporous and Mesoporous Materials, 2014, 196: 68-78. |
48 | FIERRO C M, GÓRKA J, ZAZO J A, et al. Colloidal templating synthesis and adsorption characteristics of microporous-mesoporous carbons from Kraft lignin[J]. Carbon, 2013, 62: 233-239. |
49 | LI Hui, YUAN Du, TANG Chunhua, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
50 | ZHANG Binpeng, YANG Dongjie, QIU Xueqing, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
51 | HU Bo, WANG Kan, WU Liheng, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(7): 813-828. |
52 | SANGCHOOM W, MOKAYA R. Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1658-1667. |
53 | ATTA-OBENG E, DAWSON-ANDOH B, SEEHRA M S, et al. Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization[J]. Biomass and Bioenergy, 2017, 107: 172-181. |
54 | ZHAO Wenhui, LIN Xiaoyan, CAI Huaming, et al. Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(VI)[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12745-12754. |
55 | 赵文慧. 模板法合成木质素水热炭微球及其铀吸附性能研究[D]. 绵阳: 西南科技大学, 2018. |
ZHAO Wenhui. Studies on synthesis of hydrothermal carbon microspheres from lignin by template method and the adsorption properties of uranium[D]. Mianyang: Southwest University of Science and Technology, 2018. | |
56 | SAHA D, VAN BRAMER S E, ORKOULAS G, et al. CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons[J]. Carbon, 2017, 121: 257-266. |
57 | ZHANG Ting, WEI Shuang, WATERHOUSE G I N, et al. Chromium (Ⅵ) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon[J]. Powder Technology, 2020, 360: 55-64. |
58 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
59 | JING Xiangrong, WANG Yuanying, LIU Wujun, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal, 2014, 248: 168-174. |
60 | 徐琰. 柠檬酸改性生物炭表征特性及其对亚甲基蓝吸附性能研究[D]. 长沙: 湖南大学, 2017. |
XU Yan. Characterization and adsorption properties of citric acid modified biochar[D]. Changsha: Hunan University, 2017. | |
61 | LI Yanfei, ZIMMERMAN A R, HE Feng, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue[J]. Science of the Total Environment, 2020, 722: 137972. |
62 | Honghong LYU, GAO Bin, HE Feng, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms[J]. Environmental Pollution, 2018, 233: 54-63. |
63 | ZHU Shiyun, XU Jun, KUANG Yishan, et al. Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes[J]. Industrial Crops and Products, 2021, 159: 113071. |
64 | Honghong LYU, XIA Siyu, TANG Jingchun, et al. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+ [J]. Journal of Hazardous Materials, 2020, 384: 121357. |
65 | WU Qiong, YE Xiaoxia, Yuancai LYU, et al. Lignin-based magnetic activated carbon for p-arsanilic acid removal: applications and absorption mechanisms[J]. Chemosphere, 2020, 258: 127276. |
66 | HAN Tong, LU Xincheng, SUN Yunjuan, et al. Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions[J]. Science of the Total Environment, 2020, 708: 135069. |
67 | TALEB F, AMMAR M, MOSBAH M B, et al. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption[J]. Scientific Reports, 2020, 10: 11048. |
68 | WU Zijun, HUANG Wenxing, SHAN Xiangyi, et al. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue[J]. International Journal of Biological Macromolecules, 2020, 143: 325-333. |
69 | CHEN Hang, LIU Tanglong, MENG Yi, et al. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125281. |
70 | LI Jiarong, LI Hao, YUAN Ze, et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes[J]. International Journal of Biological Macromolecules, 2019, 135: 1171-1181. |
71 | WANG Yingying, ZHU Linli, WANG Xiaohong, et al. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 321-330. |
72 | YANG Zhongzhi, GLEISNER R, MANN D H, et al. Lignin based activated carbon using H3PO4 activation[J]. Polymers, 2020, 12(12): 2829. |
73 | Dong LYU, LI Yao, WANG Lijuan. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. International Journal of Biological Macromolecules, 2020, 148: 979-987. |
74 | CHEN Fenggui, SHAHABADI S I S, ZHOU Dan, et al. Facile preparation of cross-linked lignin for efficient adsorption of dyes and heavy metal ions[J]. Reactive and Functional Polymers, 2019, 143: 104336. |
75 | QIN Hengfei, HUANG Yongkui, LIU Siyu, et al. Synthesis and properties of magnetic carbon nanocages particles for dye removal[J]. Journal of Nanomaterials, 2015, 2015: 604201. |
76 | MA Yingzhi, ZHENG Dafeng, MO Zhenye, et al. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 226-234. |
77 | Yujie BEN, FU Caixia, HU Min, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental Research, 2019, 169: 483-493. |
78 | XIE Atian, DAI Jiangdong, CHEN Xiang, et al. Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in situ activation[J]. Chemical Engineering Journal, 2016, 304: 609-620. |
79 | CHANG Zhongshuai, DAI Jiangdong, XIE Atian, et al. From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9367-9375. |
80 | XIE Atian, DAI Jiangdong, CHEN Yu, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30(1): 170-179. |
81 | GE Wenna, ZHOU Zhiping, ZHANG Peng, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
82 | TAM N T M, LIU Yunguo, BASHIR H, et al. Synthesis of porous biochar containing graphitic carbon derived from lignin content of forestry biomass and its application for the removal of diclofenac sodium from aqueous solution[J]. Frontiers in Chemistry, 2020, 8: 274. |
83 | MARTINS MOREIRA W, VIOTTI P V, GURGEL ADEODATO VIEIRA M, et al. Hydrothermal synthesis of biobased carbonaceous composite from a blend of kraft black liquor and tannin and its application to aspirin and paracetamol removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125597. |
84 | JARIA G, CALISTO V, GIL M V, et al. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge[J]. Journal of Colloid and Interface Science, 2015, 448: 32-40. |
85 | LI Yuan, ZHAO Rubin, PANG Yuxia, et al. Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 187-194. |
86 | GE Yuanyuan, XIAO Duo, LI Zhili, et al. Correction: Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers[J]. Journal of Materials Chemistry A, 2015, 3(14): 7666. |
87 | POPOVIC A L, RUSMIROVIC J D, VELICKOVIC Z, et al. Novel amino-functionalized lignin microspheres: high performance biosorbent with enhanced capacity for heavy metal ion removal[J]. International Journal of Biological Macromolecules, 2020, 156: 1160-1173. |
88 | PENG Xiongyi, WU Zijun, LI Zhili. A bowl-shaped biosorbent derived from sugarcane bagasse lignin for cadmium ion adsorption[J]. Cellulose, 2020, 27(15): 8757-8768. |
89 | JIN Can, LIU Guifeng, WU Guomin, et al. Facile fabrication of crown ether functionalized lignin-based biosorbent for the selective removal of Pb(Ⅱ)[J]. Industrial Crops and Products, 2020, 155: 112829. |
90 | HUANG Chunde, SHI Xiaofeng, WANG Chao, et al. Boosted selectivity and enhanced capacity of As(Ⅴ) removal from polluted water by triethylenetetramine activated lignin-based adsorbents[J]. International Journal of Biological Macromolecules, 2019, 140: 1167-1174. |
91 | ZHOU Haifeng, SHI Xinxin, WU Weidong, et al. Facile preparation of lignosulfonate/N-methylaniline composite and its application in efficient removal of Cr(Ⅵ) from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 154: 1194-1204. |
92 | JIN Yanqiao, ZENG Chaomin, Qiufeng LYU, et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. International Journal of Biological Macromolecules, 2019, 123: 50-58. |
93 | WANG Qiaorui, ZHENG Chunli, CUI Wei, et al. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin[J]. Chemical Engineering Journal, 2020, 391: 123581. |
94 | SILVA LAGE MOREIRA A L DA, DE SOUZA PEREIRA A, SPEZIALI M G, et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu(Ⅱ) and Cr(Ⅵ) from aqueous solution[J]. Carbohydrate Polymers, 2018, 201: 218-227. |
95 | ZHUANG Shuting, ZHU Kunkun, WANG Jianlong. Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(Ⅱ) removal[J]. Journal of Cleaner Production, 2021, 285: 124911. |
96 | USMAN M, AHMED A, YU Bing, et al. Simultaneous adsorption of heavy metals and organic dyes by β-cyclodextrin-chitosan based cross-linked adsorbent[J]. Carbohydrate Polymers, 2021, 255: 117486. |
97 | AIN Q U, ZHANG Hanbing, YASEEN M, et al. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(Ⅱ), Cd(Ⅱ), and crystal violet from aqueous solution[J]. Journal of Cleaner Production, 2020, 247: 119088. |
98 | CHAI J B, AU P I, MUBARAK N M, et al. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian Kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research International, 2020, 27(12): 13949-13962. |
99 | XU Lei, LIU Yani, WANG Jingang, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404: 124140. |
100 | KALAIVANI S S, MUTHUKRISHNARAJ A, SIVANESAN S, et al. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 104: 11-23. |
101 | WAHEED A, KAZI I W, MANZAR M S, et al. Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: synthesis, isotherm and kinetic studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125472. |
102 | HEYDARIPOUR J, GAZI M, OLADIPO A A, et al. A novel magnetic mesoporous resorcinol-melamine-formaldehyde resin for removal of phenols from aqueous solution[J]. Journal of Porous Materials, 2019, 26(5): 1249-1258. |
103 | QU Wenyuan, YUAN Tong, YIN Guojun, et al. Effect of properties of activated carbon on malachite green adsorption[J]. Fuel, 2019, 249: 45-53. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[5] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[6] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[7] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[8] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[9] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[12] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[15] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |