Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1494-1502.DOI: 10.16085/j.issn.1000-6613.2021-1789
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
WANG Jianbin1(), CHEN Yun2, WANG Kehua2, YU Xuepeng2, CHEN Cong1, LIU Jianzhong1()
Received:
2021-08-20
Revised:
2021-11-29
Online:
2022-03-28
Published:
2022-03-23
Contact:
LIU Jianzhong
王建斌1(), 陈云2, 王可华2, 于学鹏2, 陈聪1, 刘建忠1()
通讯作者:
刘建忠
作者简介:
王建斌(1997—),男,博士研究生,研究方向为废弃物能源化和资源化。E-mail:基金资助:
CLC Number:
WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502.
王建斌, 陈云, 王可华, 于学鹏, 陈聪, 刘建忠. 工业窑炉协同处置固废研究进展[J]. 化工进展, 2022, 41(3): 1494-1502.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1789
1 | 詹明秀. 水泥窑协同处置固废二 英排放特性和生成机理研究[D]. 杭州: 浙江大学, 2017. |
ZHAN Mingxiu. Research on the emission characteristic and formation mechanism of PCDD/Fs from cement kiln during solid waste co-disposal[D]. Hangzhou: Zhejiang University, 2017. | |
2 | XIAO H P, RU Y, PENG Z, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018, 210: 779-788. |
3 | VICZEK S A, ALDRIAN A, POMBERGER R, et al. Determination of the material-recyclable share of SRF during co-processing in the cement industry[J]. Resources, Conservation and Recycling, 2020, 156: 104696. |
4 | ASHRAF M S, GHOULEH Z, SHAO Y X. Production of eco-cement exclusively from municipal solid waste incineration residues[J]. Resources, Conservation and Recycling, 2019, 149: 332-342. |
5 | KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure: from a life cycle environmental impact perspective[J]. Journal of Cleaner Production, 2020, 267: 122113. |
6 | DIAZ-LOYA I, JUENGER M, SERAJ S, et al. Extending supplementary cementitious material resources: reclaimed and remediated fly ash and natural pozzolans[J]. Cement and Concrete Composites, 2019, 101: 44-51. |
7 | GENON G, BRIZIO E. Perspectives and limits for cement kilns as a destination for RDF[J]. Waste Management, 2008, 28(11): 2375-2385. |
8 | BERRY E E, MACDONALD L P. Experimental burning of used automotive crankcase oil in a dry-process cement kiln[J]. Journal of Hazardous Materials, 1975, 1(2): 137-156. |
9 | ZABANIOTOU A, THEOFILOU C. Green energy at cement kiln in Cyprus—Use of sewage sludge as a conventional fuel substitute[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 531-541. |
10 | GALVEZ-MARTOS J L, SCHOENBERGER H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns[J]. Resources, Conservation and Recycling, 2014, 86: 118-131. |
11 | 郭新干. 水泥窑协同处置固体废物分析探讨[J]. 陶瓷, 2020(11): 29-31. |
GUO Xingan. Analysis and discussion on co-processing of solid waste in cement kiln[J]. Ceramics, 2020(11): 29-31. | |
12 | 王彩云, 赵玉潮, 万迎峰, 等. 钢铁炉窑协同处置危险废物类别的适宜性探讨[J]. 工业安全与环保, 2018, 44(6): 95-98, 102. |
WANG Caiyun, ZHAO Yuchao, WAN Yingfeng, et al. Discussion on the suitability of collaborative disposal of hazardous waste categories in iron and steel furnace[J]. Industrial Safety and Environmental Protection, 2018, 44(6): 95-98, 102. | |
13 | WONG G, FAN X H, GAN M, et al. Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: a novel thermal treatment[J]. Journal of Cleaner Production, 2020, 263: 121400. |
14 | SINGH P K, AVALA LAVA K, KATIYAR P K, et al. Agglomeration behaviour of steel plants solid waste and its effect on sintering performance[J]. Journal of Materials Research and Technology, 2017, 6(3): 289-296. |
15 | ZHOU H, MA P N, LAI Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process[J]. Journal of Cleaner Production, 2020, 275: 122954. |
16 | BABICH A, SENK D, KNEPPER M, et al. Conversion of injected waste plastics in blast furnace[J]. Ironmaking & Steelmaking, Taylor & Francis, 2016, 43(1): 11-21. |
17 | KIM D, SHIN S, SOHN S, et al. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies[J]. Journal of Hazardous Materials, 2002, 94(3): 213-222. |
18 | DE ASSIS C F C, TENÓRIO J A S, ASSIS P S, et al. Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace[J]. Energy & Fuels, 2014, 28(11): 7268-7273. |
19 | SEKINE Y, FUKUDA K, KATO K, et al. CO2 reduction potentials by utilizing waste plastics in steel works[J]. The International Journal of Life Cycle Assessment, 2009, 14(2): 122-136. |
20 | DIEZ M A, ALVAREZ R, CIMADEVILLA J L G. Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production[J]. Fuel, 2013, 114: 216–223. |
21 | ZHOU J N, SONG W M, LI Y J, et al. High-quality syngas production: the green and efficient utilization of waste tire and waste heat from the steelmaking converter process[J]. Waste Management, 2021, 131: 98-107. |
22 | BARICOVÁ D, PRIBULOVÁ A, BUĽKO B, et al. Recycling of the steelmaking by-products into the oxygen converter charge[J]. New Trends in Production Engineering, 2019, 2(2): 1-11. |
23 | ASANUMA M, ARIYAMA T, SATO M, et al. Development of waste plastics injection process in blast furnace[J]. ISIJ International, 2000, 40(3): 244-251. |
24 | TRINKEL V, KIEBERGER N, BÜRGLER T, et al. Influence of waste plastic utilisation in blast furnace on heavy metal emissions[J]. Journal of Cleaner Production, 2015, 94: 312-320. |
25 | NOMURA S. Use of waste plastics in coke oven: a review[J]. Journal of Sustainable Metallurgy, 2015, 1(1): 85-93. |
26 | 张垒, 刘尚超, 张道权, 等. 烧结炼铁协同处置含铬污泥的应用研究[J]. 烧结球团, 2018, 43(5): 61-64. |
ZHANG Lei, LIU Shangchao, ZHANG Daoquan, et al. Application research on co-disposal of chromium-containing sludge in sintering and ironmaking[J]. Sintering and Pelletizing, 2018 43(5): 61-64. | |
27 | 李建, 毛晓明, 胡德生. 焦化工艺协同处置轧钢含油污泥的基础研究[J]. 宝钢技术, 2018(2): 39-45. |
LI Jian, MAO Xiaoming, HU Desheng. Foundational research on the treatment of oily sludge by coking process[J]. Baosteel Technology, 2018(2): 39-45. | |
28 | 陈永军. 焦油渣配型煤炼焦工艺[J]. 山东冶金, 2018, 40(3): 69, 71. |
CHEN Yongjun. Coking process with tar residue and briquette[J]. Shandong Metallurgy, 2018, 40(3): 69, 71. | |
29 | 刘剑平, 唐丽萍. 转炉焚烧废油漆涂料桶研究[J]. 宝钢技术, 2017(1): 39-42. |
LIU Jianping, TANG Liping. Research of converter burning waste paint bucket[J]. Baosteel Technology, 2017(1): 39-42. | |
30 | 李洋洋. 火电厂协同处置污泥环境安全及运行工况影响研究[D]. 北京: 清华大学, 2011. |
LI Yangyang. Effects of sludge cofiring on environmental security and processing stability of coal-fired power plants[D]. Beijing: Tsinghua University, 2011. | |
31 | 翁焕新, 苏闽华, 马学文, 等. 烟气干化污泥及其对霾的源头控制作用[J]. 科学通报, 2015, 60(30): 2890-2899. |
WENG Huanxin, SU Minhua, MA Xuewen, et al. Sludge drying using flue gas and its role in haze source control[J]. Chinese Science Bulletin, 2015, 60(30): 2890-2899. | |
32 | CAMPBELL P E, MCMULLAN J T, WILLIAMS B C, et al. Co-combustion of coal and textiles in a small-scale circulating fluidised bed boiler in Germany[J]. Fuel Processing Technology, 2000, 67(2): 115-129. |
33 | NUNES L J R, MATIAS J C O, CATALÃO J P S. Biomass waste co-firing with coal applied to the Sines Thermal Power Plant in Portugal[J]. Fuel, 2014, 132: 153-157. |
34 | NIMMO W, SINGH S, GIBBS B M, et al. The evaluation of waste tyre pulverised fuel for NO x reduction by reburning[J]. Fuel, 2008, 87(13): 2893-2900. |
35 | 张晴, 莫华, 徐海红, 等. 燃煤电厂掺烧废弃物现状及环境管理建议[J]. 环境工程, 2020, 38(6): 202-207. |
ZHANG Qing, MO Hua, XU Haihong, et al. Present situation of co-combustion of waste and coal in power plants and suggestions on environmental management[J]. Environmental Engineering, 2020, 38(6): 202-207. | |
36 | 井新经, 陈运, 张海龙, 等. 生物质耦合发电技术及发电量计算方法[J]. 热力发电, 2019, 48(12): 31-37. |
JING Xinjing, CHEN Yun, ZHANG Hailong, et al. Biomass coupled power generation technology and power generation calculation methods[J]. Thermal Power Generation, 2019, 48(12): 31-37. | |
37 | 张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析[J]. 中国资源综合利用, 2017, 35(7): 64-68. |
ZHANG Shixin, CAI Fanglong, CHEN Yuhong, et al. Feasibility analysis of large CFB boiler mixed burning biomass fuels and “urban solid waste”[J]. China Resources Comprehensive Utilization, 2017, 35(7): 64-68. | |
38 | GUO Q H, ZHANG Z Q, HE Q, et al. Characteristics of high-carbon-content slag and utilization for coal-water slurry preparation[J]. Energy & Fuels, 2020, 34(11): 14058-14064. |
39 | WANG R K, ZHAO Z H, YIN Q Q, et al. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal-sludge-slurry and petroleum coke-sludge-slurry[J]. Applied Thermal Engineering, 2018, 128: 1555-1564. |
40 | KUZNETSOV G V, MALYSHEV D Y, KOSTOREVA Z A, et al. The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism[J]. Energy, 2020, 201: 117701. |
41 | NYASHINA G S, SHLEGEL N E, VERSHININA K Y, et al. Industrial waste as part of coal-water slurry fuels[J]. Energy & Fuels, 2018, 32(11): 11398-11410. |
42 | WANG R K, LIU J Z, LYU Y, et al. Sewage sludge disruption through sonication to improve the co-preparation of coal-sludge slurry fuel: the effects of sonic frequency[J]. Applied Thermal Engineering, 2016, 99: 645-651. |
43 | WANG R K, ZHAO Z H, LIU J Z, et al. Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation[J]. Energy, 2016, 113: 319-327. |
44 | WANG J Q, LIU J Z, JIN Y Q, et al. Study on the slurry ability and combustion behaviour of coal-bioferment residue of drugs-slurry[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 838-844. |
45 | WANG S N, LIU J Z, PISUPATI S V, et al. Dispersion mechanism of coal water slurry prepared by mixing various high-concentration organic waste liquids[J]. Fuel, 2021, 287: 119340. |
46 | LI D D, LIU J Z, WANG S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. |
47 | 李雪冰. 德士古气化炉协同处置危险废物的污染物降解与排放研究[D]. 北京: 中国环境科学研究院, 2018. |
LI Xuebing. Degradation and emission of pollutants during co-processing of hazardous waste in Texaco gasifier[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2018. | |
48 | 任金锁, 丁满福. 晋华炉加压煤气化技术综述[J]. 中国化工装备, 2021, 23(2): 3-7, 23. |
REN Jinsuo, DING Manfu. Review of Jinhua Gasifier pressurized coal gasification technology[J]. China Chemical Industry Equipment, 2021, 23(2): 3-7, 23. | |
49 | 王永安, 周志江, 代松涛. 有机合成浆在煤气化装置的应用分析[J]. 广州化工, 2020, 48(4): 104-105, 123. |
WANG Yongan, ZHOU Zhijiang, DAI Songtao. Application analysis of organic synthetic coal water slurry in coal gasification device[J]. Guangzhou Chemical Industry, 48(4): 104-105, 123. | |
50 | DONG J, CHI Y, TANG Y J, et al. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration[J]. Energy & Fuels, American Chemical Society, 2015, 29(11): 7516-7525. |
51 | Waste casification & pyrolysis: risk high, low yield processes for waste management[R]. Global Alliance for Incinerator Alternatives, 2017. |
52 | VADILLO V, SÁNCHEZ-ONETO J, PORTELA J R, et al. Problems in supercritical water oxidation process and proposed solutions[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7617-7629. |
53 | GARCÍA-RODRÍGUEZ Y, MATO F A, MARTÍN A, et al. Energy recovery from effluents of supercritical water oxidation reactors[J]. The Journal of Supercritical Fluids, 2015, 104: 1-9. |
54 | WANG Y F, ZHU H M, JIANG X G, et al. Study on the evolution and transformation of Cl during co-incineration of a mixture of rectification residue and raw meal of a cement kiln[J]. Waste Management, 2019, 84: 112-118. |
[1] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[2] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[3] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[4] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[5] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[6] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[7] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[8] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[9] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[10] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[11] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[12] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[13] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[14] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[15] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |