1 |
中华人民共和国生态环境部. 2019年中国生态环境统计年报[EB/OL]. [2021-08-27]. .
|
2 |
LIN W Y, NG W C, WONG B S E, et al. Evaluation of sewage sludge incineration ash as a potential land reclamation material[J]. Journal of Hazardous Materials, 2018, 357: 63-72.
|
3 |
刘云兴, 罗海斌. 中国城市污水厂污泥处理技术的现状及发展研究[J]. 环境科学与管理, 2013, 38(7): 94-97.
|
|
LIU Yunxing, LUO Haibin. Current status and development of Chinese urban sewage sludge treatment technologies[J]. Environmental Science and Management, 2013, 38(7): 94-97.
|
4 |
张杞蓉, 普晓晶. 中国城市污水厂污泥处置现状研究[J]. 环境科学与管理, 2015, 40(4): 86-89.
|
|
ZHANG Qirong, PU Xiaojing. Current status of China’s urban sewage plant sludge disposal[J]. Environmental Science and Management, 2015, 40(4): 86-89.
|
5 |
RAMACHANDRAN A, RUSTUM R, ADELOYE A J. Anaerobic digestion process modeling using Kohonen self-organising maps[J]. Heliyon, 2019, 5(4): e01511.
|
6 |
SHI Y, HUANG J, ZENG G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview[J]. Chemosphere, 2017, 180: 396-411.
|
7 |
戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5.
|
|
DAI Xiaohu, ZHANG Chen, ZHANG Linwei, et al. Thoughes on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 57(3): 1-5.
|
8 |
TAO Z, WANG D, YAO F, et al. Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge[J]. Science of the Total Environment, 2020, 704: 135849.
|
9 |
CHEN J, TYAGI R D, LI J, et al. Economic assessment of biodiesel production from wastewater sludge[J]. Bioresource Technology, 2018, 253: 41-48.
|
10 |
BASUVARAJ M, FEIN J, LISS S N. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J]. Water Research, 2015, 82: 104-117.
|
11 |
SEVIOUR T, YUAN Z, LOOSDRECHT M C M VAN, et al. Aerobic sludge granulation: a tale of two polysaccharides?[J]. Water Research, 2012, 46(15): 4803-4813.
|
12 |
PATINVOH R J, OSADOLOR O A, CHANDOLIAS K, et al. Innovative pretreatment strategies for biogas production[J]. Bioresource Technology, 2017, 224: 13-24.
|
13 |
PASSOS F, ORTEGA V, DONOSO-BRAVO A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation[J]. Bioresource Technology, 2017, 227: 239-246.
|
14 |
KOR-BICAKCI G, ESKICIOGLU C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 423-443.
|
15 |
KIM J, PARK C, KIM T H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 271-275.
|
16 |
WANG J, XUE Q, GUO T, et al. A review on CFD simulating method for biogas fermentation material fluid[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 64-73.
|
17 |
赵阳, 金刚, 汪辉. 不同污泥预处理方法对污泥厌氧消化产气量影响研究[J]. 资源节约与环保, 2015(9): 40-41.
|
|
ZHAO Yang, JIN Gang, WANG Hui. Study on the influence of different sludge pretreatment methods on the gas production of sludge anaerobic digestion[J]. Resource Conservation and Environmental Protection, 2015(9): 40-41.
|
18 |
THOMPSON T M, YOUNG B R, BAROUTIAN S. Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery[J]. Fuel, 2020, 279: 118527.
|
19 |
LI W, FANG A, LIU B, et al. Effect of different co-treatments of waste activated sludge on biogas production and shaping microbial community in subsequent anaerobic digestion[J]. Chemical Engineering Journal, 2019, 378: 122098.
|
20 |
KIM D, JEONG E, OH S, et al. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration[J].Water Research, 2010, 44: 3093-3100.
|
21 |
RASAPOOR M, ADL M, BAROUTIAN S, et al. Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester[J]. Ultrasonics Sonochemistry, 2019, 51: 517-525.
|
22 |
PASSOS F, SOLÉ M, GARCÍA J, et al. Biogas production from microalgae grown in wastewater: effect of microwave pretreatment[J]. Applied Energy, 2013, 108: 168-175.
|
23 |
PASSOS F, ASTALS S, FERRER I. Anaerobic digestion of microalgal biomass after ultrasound pretreatment[J]. Waste Management, 2014, 34(11): 2098-2103.
|
24 |
PASSOS F, UGGETTI E, CARRÈRE H, et al. Pretreatment of microalgae to improve biogas production: a review[J]. Bioresource Technology, 2014, 172: 403-412.
|
25 |
AGARWAL M, TARDIO J, MOHAN S V. Pyrolysis of activated sludge: energy analysis and its technical feasibility[J]. Bioresource Technology, 2015, 178: 70-75.
|
26 |
CHEN J L, ORTIZ R, STEELE T W J, et al. Toxicants inhibiting anaerobic digestion: a review[J]. Biotechnology Advances, 2014, 32(8): 1523-1534.
|
27 |
ROMERO-GÜIZA M S, MATA-ALVAREZ J, CHIMENOS J M, et al. The effect of magnesium as activator and inhibitor of anaerobic digestion[J]. Waste Management, 2016, 56: 137-142.
|
28 |
ERYILDIZ B, TAHERZADEH M J. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from Citrus waste by anaerobic digestion[J]. Bioresource Technology, 2020, 302: 122800.
|
29 |
PHUTTARO C, SAWATDEENARUNAT C, SURENDRA K C, et al. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield[J]. Bioresource Technology, 2019, 284: 128-138.
|
30 |
LIU X, XU Q, WANG D, et al. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: process optimization and effects on anaerobic digestion and polyacrylamide degradation[J]. Bioresource Technology, 2019, 281: 158-167.
|
31 |
NEUMANN P, GONZÁLEZ Z, VIDAL G. Sequential ultrasound and low-temperature thermal pretreatment: process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion[J]. Bioresource Technology, 2017, 234: 178-187.
|
32 |
AVILA R, CARRERO E, CRIVILLÉS E, et al. Effects of low temperature thermal pretreatments in solubility and co-digestion of waste activated sludge and microalgae mixtures[J]. Algal Research, 2020, 50: 101965.
|
33 |
CHEN S, DONG B, DAI X, et al. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Management, 2019, 88: 309-318.
|
34 |
LI X, CHEN S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: conversion pathway of volatile sulphur compounds[J]. Chemosphere, 2020, 244: 125466.
|
35 |
STRONG P J, MCDONALD B, GAPES D J. Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment[J]. Bioresource Technology, 2011, 102(9): 5520-5527.
|
36 |
LEE J, PARK K Y. Impact of hydrothermal pretreatment on anaerobic digestion efficiency for lignocellulosic biomass: influence of pretreatment temperature on the formation of biomass-degrading byproducts[J]. Chemosphere, 2020, 256: 127116.
|
37 |
WANG D, WANG Y, LIU X, et al. Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge[J]. Bioresource Technology, 2019, 283: 316-325.
|
38 |
ZHANG D, FENG Y, HUANG H, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629.
|
39 |
XU D, HAN X, CHEN H, et al. New insights into impact of thermal hydrolysis pretreatment temperature and time on sewage sludge: structure and composition of sewage sludge from sewage treatment plant[J]. Environmental Research, 2020, 191: 110122.
|
40 |
TOUTIAN V, BARJENBRUCH M, UNGER T, et al. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge[J]. Water Research, 2020, 171: 115383.
|
41 |
CESARO A, BELGIORNO V. Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions[J]. Chemical Engineering Journal, 2014, 240: 24-37.
|
42 |
ZOU X, YANG R, ZHOU X, et al. Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J]. Journal of Cleaner Production, 2020, 259: 120940.
|
43 |
GÜELFO L A F, ÁLVAREZ-GALLEGO C, SALES D, et al. The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW)[J]. Chemical Engineering Journal, 2011, 168(1): 249-254.
|
44 |
GENG Y K, YUAN L, LIU T, et al. Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery[J]. Applied Energy, 2020, 275: 115291.
|
45 |
CHEN Y, YANG H, ZOU H, et al. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge[J]. Journal of Cleaner Production, 2020, 277: 123998.
|
46 |
WANG S, YU S, LU Q, et al. Development of an alkaline/acid pre-treatment and anaerobic digestion (APAD) process for methane generation from waste activated sludge[J]. Science of the Total Environment, 2020, 708: 134564.
|
47 |
LI Y, LIN L, LI X. Chemically enhanced primary sedimentation and acidogenesis of organics in sludge for enhanced nitrogen removal in wastewater treatment[J]. Journal of Cleaner Production, 2020, 244: 118705.
|
48 |
KUMAR A, SAMADDER S R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: a review[J]. Energy, 2020, 197: 117253.
|
49 |
ŞAHINKAYA S, SEVIMLI M F. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion[J]. Ultrasonics Sonochemistry, 2013, 20(1): 587-594.
|
50 |
PILLI S, BHUNIA P, YAN S, et al. Ultrasonic pretreatment of sludge: a review[J]. Ultrasonics Sonochemistry, 2011, 18(1): 1-18.
|
51 |
TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009.
|
52 |
TIEHM A, NICKEL K, NEIS U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J]. Water Science and Technology, 1997, 36(11): 121-128.
|
53 |
MARTÍN M Á, GONZÁLEZ I, SERRANO A, et al. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge[J]. Journal of Environmental Management, 2015, 147: 330-337.
|
54 |
LE L T, LEE S, BUI X T, et al. Suppression of nitrite-oxidizing bacteria under the combined conditions of high free ammonia and low dissolved oxygen concentrations for mainstream partial nitritation[J]. Environmental Technology & Innovation, 2020, 20: 101135.
|
55 |
YAN M, TREU L, CAMPANARO S, et al. Effect of ammonia on anaerobic digestion of municipal solid waste: inhibitory performance, bioaugmentation and microbiome functional reconstruction[J]. Chemical Engineering Journal, 2020, 401: 126159.
|
56 |
LI X, XIONG N, WANG X, et al. New insight into volatile sulfur compounds conversion in anaerobic digestion of excess sludge: influence of free ammonia nitrogen and thermal hydrolysis pretreatment[J]. Journal of Cleaner Production, 2020, 277: 123366.
|
57 |
BOZKURT Y C, APUL O G. Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion[J]. Current Opinion in Environmental Science & Health, 2020, 14: 1-9.
|
58 |
LIU Jianwei, ZHAO Mengfei, Chen LYU, et al. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: performance, kinetics and energy recovery[J]. Environmental Research, 2020, 189: 109856.
|
59 |
APPELS L, BAEYENS J, DEGRÈVE J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781.
|
60 |
AHRING B K, PETER W. Sensitivity of thermophilic methanogenic bacteria to heavy metals[J]. Current Microbiology, 1985, 12(5): 273-276.
|
61 |
徐俊, 朱雯喆, 谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展, 2019, 38(9): 4227-4237.
|
|
XU Jun, ZHU Wenzhe, XIE Li. Effect of bioaugmentation on the performance of anaerobic digestion: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237.
|
62 |
ARIUNBAATAR J, PANICO A, FRUNZO L, et al. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods[J]. Journal of Environmental Management, 2014, 146: 142-149.
|
63 |
王磊, 谭学军, 王逸贤, 等. 热水解预处理剩余污泥的有机物分布及厌氧消化特性[J]. 环境工程, 2019, 37(3): 35-39.
|
|
WANG Lei, TAN Xuejun, WANG Yixian, et al. Organic matter distribution and charactersics of excess sludge pretreated by thermal hydrolysis[J]. Environmental Engineering, 2019, 37(3): 35-39.
|
64 |
LU D, SUN F, ZHOU Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J]. Bioresource Technology, 2018, 266: 60-67.
|
65 |
NAZARI L, YUAN Z, SANTORO D, et al. Low-temperature thermal pre-treatment of municipal wastewater sludge: process optimization and effects on solubilization and anaerobic degradation[J]. Water Research, 2017, 113: 111-123.
|
66 |
李海兵, 刘志英, 林承顺, 等. 微波预处理对剩余污泥生化处理的影响[J]. 环境工程学报, 2018, 12(4): 1254-1260.
|
|
LI Haibing, LIU Zhiying, LIN Chengshun, et al. Effect of microwave pretreatment on biochemical treatment of waste actived sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1254-1260.
|
67 |
EBENEZER A V, KALIAPPAN S, KUMAR S A, et al. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge[J]. Bioresource Technology, 2015, 185: 194-201.
|
68 |
于潘芬. 不同预处理对污泥厌氧消化性能的影响研究[D]. 青岛: 青岛大学, 2019.
|
|
YU Panfen. Study on the influence of different pretreatments on the performance of anaerobic digestion of sludge[D]. Qingdao: Qingdao University, 2019.
|
69 |
KIM D, LEE J. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time[J]. Bioprocess and Biosystem Engineering, 2012, 35: 289-296.
|
70 |
TYAGI V K, LO S L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review[J]. Reviews in Environmental Science and Bio-Technology, 2011, 10(3): 215-242.
|
71 |
XU H, HE P, YU G, et al. Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability[J]. Journal of Environmental Sciences, 2011, 23(9): 1472-1478.
|
72 |
SAPKAITE I, BARRADO E, FDZ-POLANCO F, et al. Optimization of a thermal hydrolysis process for sludge pre-treatment[J]. Journal of Environmental Management, 2017, 192: 25-30.
|
73 |
ALZATE M E, MUNOZ R, ROGALLA F, et al. Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment[J]. Bioresource Technology, 2012,123: 488-494.
|
74 |
HAO X, CHEN Q, LOOSDRECHT M C M VAN, et al. Sustainable disposal of excess sludge: incineration without anaerobic digestion[J]. Water Research, 2020, 170: 115298.
|
75 |
GIANICO A, FIORIN D, TOSTI L A, et al. Innovative two-steps thermo-chemical pretreatment for sludge reduction and energy recovery: cost and energy assessment[J]. Water and Environment Journal, 2020, 34(S1): 540-550.
|
76 |
CHO S, PARK S, SEON J, et al. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production[J]. Bioresource Technology, 2013, 143: 330-336.
|
77 |
LIU X, WANG Q, TANG Y, et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: resource transformation and energy balance[J]. Chemical Engineering Journal, 2020, 21: 127430.
|
78 |
VOLSCHAN JUNIOR I, ALMEIDA R, CAMMAROTA M C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants[J]. Journal of Water Process Engineering, 2021, 40: 101857.
|
79 |
PASSOS F, FERRER I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production[J]. Water Research, 2015, 68: 364-373.
|
80 |
KAVITHA S, BANU J R, PRIYA A A, et al. Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility[J]. Applied Energy, 2017, 208: 228-238.
|
81 |
XIAO B, TANG X, YI H, et al. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J]. Bioresource Technology, 2020, 304: 122979.
|
82 |
KAVITHA S, BANU J R, SUBITHA G, et al. Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: energetic analysis and economic assessment[J]. Bioresource Technology, 2016, 219: 479-486.
|
83 |
PILLI S, MORE T, YAN S, et al. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2015, 157: 250-261.
|
84 |
YUAN T, CHENG Y, ZHANG Z, et al. Comparative study on hydrothermal treatment as pre-and post-treatment of anaerobic digestion of primary sludge: focus on energy balance, resources transformation and sludge dewaterability[J]. Applied Energy, 2019, 239: 171-180.
|
85 |
BISWAL B K, HUANG H, DAI J, et al. Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion[J]. Bioresource Technology, 2020, 297: 122423.
|
86 |
LU J, GAVALA H N, SKIADAS I V, et al. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. Journal of Environmental Management, 2008, 88(4): 881-889.
|
87 |
APPELS L, DEGRÈVE J, BRUGGEN B VAN DER, et al. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion[J]. Bioresource Technology, 2010, 101(15): 5743-5748.
|
88 |
WANG L, LI A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products[J]. Water Research, 2015, 68: 291-303.
|
89 |
CHEN R, YU X, DONG B, et al. Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): energy efficiency assessment and pyrolysis kinetics analysis[J]. Energy, 2020, 190: 116240.
|
90 |
CANO R, PÉREZ-ELVIRA S I, FDZ-POLANCO F. Energy feasibility study of sludge pretreatments: a review[J]. Applied Energy, 2015, 149: 176-185.
|
91 |
LIU J, DONG L, DAI Q, et al. Enhanced anaerobic digestion of sewage sludge by thermal or alkaline-thermal pretreatments: influence of hydraulic retention time reduction[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2655-2667.
|
92 |
PASSOS F, CARRETERO J, FERRER I. Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound[J]. Chemical Engineering Journal, 2015, 279: 667-672.
|
93 |
HOUTMEYERS S, DEGREVE J, WILLEMS K, et al. Comparing the influence of low power ultrasonic and microwave pretreatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2014, 171: 44-49.
|
94 |
AKGUL D, CELLA M A, ESKICIOGLU C. Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge[J]. Energy, 2017, 123: 271-282.
|
95 |
PILLUI S, YAN S, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166: 374-386.
|
96 |
KIM D, LEE K, PARK K Y. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment[J]. International Biodeterioration & Biodegradation, 2015, 101: 42-46.
|
97 |
ŞAHINKAYA S, SEVIMLI M F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 197-206.
|
98 |
DHAR B R, NAKHLA G, RAY M B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge[J]. Waste Management, 2012, 32(3): 542-549.
|
99 |
CHEN H, YI H, LI H, et al. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism[J]. Renewable Energy, 2020, 147: 2409-2416.
|
100 |
KAVITHA S, KANNAH R Y, YEOM I T, et al. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production[J]. Bioresource Technology, 2015, 197: 383-392.
|