Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 144-158.DOI: 10.16085/j.issn.1000-6613.2025-0373
• Industrial catalysis • Previous Articles
LIU Zhe(
), ZHOU Shunli, LI Yongxiang(
), ZHANG Chengxi, LIU Yipeng
Received:2025-03-11
Revised:2025-04-21
Online:2025-11-24
Published:2025-10-25
Contact:
LI Yongxiang
通讯作者:
李永祥
作者简介:刘哲(2000—),男,硕士研究生,研究方向为固体酸催化剂。E-mail:liuzhe.ripp@sinopec.com。
基金资助:CLC Number:
LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158.
刘哲, 周顺利, 李永祥, 张成喜, 刘宜鹏. 烷基萘合成催化剂研究进展[J]. 化工进展, 2025, 44(S1): 144-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0373
| 催化剂类型 | 催化剂名称 | 烷基化试剂 | 反应温度/℃ | 反应压力/MPa | 反应时间/h | 参考文献 |
|---|---|---|---|---|---|---|
| 无机酸 | AlCl3 | 十一烯/十二烯 | 40 | 0 | 0.5 | [ |
| 有机酸 | CH3SO3H | 辛烯 | 80 | 0 | 3 | [ |
| 有机酸 | CF3SO3H | 十二烯 | 80 | 0 | 1 | [ |
| 离子液体 | Et3NHCl-AlCl3 | 辛烯 | 60 | 0 | 1 | [ |
| 离子液体 | Et3NHCl-AlCl3 | 十四烯 | 60 | 0 | 0.5 | [ |
| 固体超强酸 | SO | 十四烯 | 100 | 0 | 5 | [ |
| 杂多酸 | 硅钨酸/ZrO₂ | 辛烯 | 80 | 0 | 4 | [ |
| 杂多酸 | 磷钨酸/SiO₂ | 十六烯 | 130 | 0 | 1 | [ |
| 分子筛 | HY | 十一烯/十二烯 | 130 | 1 | 6 | [ |
| 分子筛 | HY | 十四烯 | 175 | 1 | 3 | [ |
| 分子筛 | HY | 十四烯 | 175 | 0.5 | 6 | [ |
| 分子筛 | HY | 十二烯 | 210 | 0 | 4 | [ |
| 分子筛 | HY | 十八烯 | 190 | 0 | 4 | [ |
| 催化剂类型 | 催化剂名称 | 烷基化试剂 | 反应温度/℃ | 反应压力/MPa | 反应时间/h | 参考文献 |
|---|---|---|---|---|---|---|
| 无机酸 | AlCl3 | 十一烯/十二烯 | 40 | 0 | 0.5 | [ |
| 有机酸 | CH3SO3H | 辛烯 | 80 | 0 | 3 | [ |
| 有机酸 | CF3SO3H | 十二烯 | 80 | 0 | 1 | [ |
| 离子液体 | Et3NHCl-AlCl3 | 辛烯 | 60 | 0 | 1 | [ |
| 离子液体 | Et3NHCl-AlCl3 | 十四烯 | 60 | 0 | 0.5 | [ |
| 固体超强酸 | SO | 十四烯 | 100 | 0 | 5 | [ |
| 杂多酸 | 硅钨酸/ZrO₂ | 辛烯 | 80 | 0 | 4 | [ |
| 杂多酸 | 磷钨酸/SiO₂ | 十六烯 | 130 | 0 | 1 | [ |
| 分子筛 | HY | 十一烯/十二烯 | 130 | 1 | 6 | [ |
| 分子筛 | HY | 十四烯 | 175 | 1 | 3 | [ |
| 分子筛 | HY | 十四烯 | 175 | 0.5 | 6 | [ |
| 分子筛 | HY | 十二烯 | 210 | 0 | 4 | [ |
| 分子筛 | HY | 十八烯 | 190 | 0 | 4 | [ |
| 改性方法 | 分子筛名称 | 酸性质调控 | 孔结构调控 | 催化性能影响 | 适用范围 | 参考文献 |
|---|---|---|---|---|---|---|
| 盐酸处理 | HM | 总酸量减少,强酸量占比提高 | 介孔体积与平均孔径增加、介孔孔径分布变宽 | 活性大幅提高,但不利于小分子产物的选择性生成 | 分子尺寸相对较大的烷基萘的合成 | [ |
| HY | [ | |||||
| 草酸处理 | HY | 酸量与酸强度均降低 | — | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 高温水蒸气处理 | HY | 总酸量减少,强酸量占比提高 | 介孔体积与平均孔径增加、介孔孔径分布变宽 | 活性与稳定性大幅提高 | 长链烷基萘及多烷基萘的合成 | [ |
| 钨金属改性 | HY | 总酸量减少,弱酸量占比提高,B酸和L酸比值降低 | 总孔体积与介孔体积均减小 | 活性与单烷基萘选择性均提高 | 单烷基萘的选择性生成 | [ |
| 镁金属改性 | USY | 酸量与酸强度均降低 | 平均孔径减小 | 活性降低,但对2,6-二仲丁基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 锌金属改性 | USY | 弱酸量增加,强酸量尤其是外表面强酸量大幅减少 | 介孔体积与平均孔径减小 | 活性提高,对2,6-二异丙基萘的选择性提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铜金属改性 | HY | L酸量增加 | 孔径收缩 | 活性提高,对2,6-二异丙基萘的选择性提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铁金属改性 | HY | 强酸量与弱酸量均减少,中强酸量增加 | 总孔体积与平均孔径略微增加 | 活性略微降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铈金属改性 | HY | 酸量与酸强度均减少 | 总孔体积与介孔体积均减小,平均孔径减小 | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铈金属改性 | HM | 有效钝化外表面酸性位点 | 介孔体积均减小、平均孔径略微减小 | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 改性方法 | 分子筛名称 | 酸性质调控 | 孔结构调控 | 催化性能影响 | 适用范围 | 参考文献 |
|---|---|---|---|---|---|---|
| 盐酸处理 | HM | 总酸量减少,强酸量占比提高 | 介孔体积与平均孔径增加、介孔孔径分布变宽 | 活性大幅提高,但不利于小分子产物的选择性生成 | 分子尺寸相对较大的烷基萘的合成 | [ |
| HY | [ | |||||
| 草酸处理 | HY | 酸量与酸强度均降低 | — | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 高温水蒸气处理 | HY | 总酸量减少,强酸量占比提高 | 介孔体积与平均孔径增加、介孔孔径分布变宽 | 活性与稳定性大幅提高 | 长链烷基萘及多烷基萘的合成 | [ |
| 钨金属改性 | HY | 总酸量减少,弱酸量占比提高,B酸和L酸比值降低 | 总孔体积与介孔体积均减小 | 活性与单烷基萘选择性均提高 | 单烷基萘的选择性生成 | [ |
| 镁金属改性 | USY | 酸量与酸强度均降低 | 平均孔径减小 | 活性降低,但对2,6-二仲丁基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 锌金属改性 | USY | 弱酸量增加,强酸量尤其是外表面强酸量大幅减少 | 介孔体积与平均孔径减小 | 活性提高,对2,6-二异丙基萘的选择性提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铜金属改性 | HY | L酸量增加 | 孔径收缩 | 活性提高,对2,6-二异丙基萘的选择性提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铁金属改性 | HY | 强酸量与弱酸量均减少,中强酸量增加 | 总孔体积与平均孔径略微增加 | 活性略微降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铈金属改性 | HY | 酸量与酸强度均减少 | 总孔体积与介孔体积均减小,平均孔径减小 | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| 铈金属改性 | HM | 有效钝化外表面酸性位点 | 介孔体积均减小、平均孔径略微减小 | 活性降低,但对2,6-二异丙基萘的选择性显著提高 | 2,6-二烷基萘的选择性生成 | [ |
| [1] | HU Chenghong, AI Jia, MA Lin, et al. Ester oils prepared from fully renewable resources and their lubricant base oil properties[J]. ACS Omega, 2021, 6(25): 16343-16355. |
| [2] | HESSELL E T, ABRAMSHE R A. Alkylated naphthalenes as high-performance synthetic fluids[J]. Journal of Synthetic Lubrication, 2003, 20(2): 109-122. |
| [3] | CHEN Shuoshuo, FAN Shuguang, SONG Ningning, et al. Load-carrying capacity and tribomechanism of DDA/MADE modified MoO3 nanoparticle as an additive for alkylated naphthalene base oil[J]. Tribology International, 2024, 195: 109610. |
| [4] | 高晓光. 国产烷基萘在汽油机油中的应用[J]. 合成润滑材料, 2019, 46(2): 22-24. |
| GAO Xiaoguang. Application of domestic alkylated naphthalene in gasoline engine oils[J]. Synthetic Lubricants, 2019, 46(2): 22-24. | |
| [5] | 李媛媛. 三氟甲烷磺酸催化烷基萘基础油的合成及其润滑性能研究[D]. 太原: 太原理工大学, 2023. |
| LI Yuanyuan. Synthesis of alkylnaphthalene base oils catalyzed by trifluoromethanesulfonic acid and their lubricating properties[D]. Taiyuan: Taiyuan University of Technology, 2023. | |
| [6] | 简敏, 李欣欣, 曹发海, 等. 烷基萘的应用与制备工艺研究[J]. 化工生产与技术, 2003, 9(2): 14-17, 1. |
| JIAN Min, LI Xinxin, CAO Fahai, et al. Application and preparation of alkyl naphthalene[J]. Chemical Production and Technology, 2003, 9(2): 14-17, 1. | |
| [7] | 王国伟, 冯申荣, 林兰萍, 等. 电容器用绝缘油烷基萘性能研究[J]. 电力电容器, 2002, 23(1): 6-11. |
| WANG Guowei, FENG Shenrong, LIN Lanping, et al. Study on performance of alkylnaphthalene as capacitor insulating oil[J]. Power Capacitors, 2002, 23(1): 6-11. | |
| [8] | CAI Menglu, WANG Xiaozhong, MO Yiming, et al. Promotional synergistic effect of fine-tuned mordenite: Overcoming the selectivity limitations of naphthalene alkylation with tert-butyl alcohol[J]. Microporous and Mesoporous Materials, 2022, 333: 111725. |
| [9] | 李鹏, 张东恒, 熊晶, 等. 烷基萘的合成及性能、应用概述[J]. 润滑油, 2015, 30(4): 5-8. |
| LI Peng, ZHANG Dongheng, XIONG Jing, et al. Preparation, performance and application of alkylated naphthalene[J]. Lubricating Oil, 2015, 30(4): 5-8. | |
| [10] | 柳影, 赵勤, 王晓波. 长链烷基萘基础油的合成及润滑性能研究[J]. 润滑与密封, 2011, 36(12): 23-25, 49. |
| LIU Ying, ZHAO Qin, WANG Xiaobo. Synthesis of long chain alklynaphthalene base stocks and study on the lubricating properties[J]. Lubrication Engineering, 2011, 36(12): 23-25, 49. | |
| [11] | ZHAO Zhongkui, QIAO Weihong, WANG Xiuna, et al. HY zeolite promoted free-solvent alkylation of α-methylnaphthalene with long chain olefins in liquid-solid intermittent reaction[J]. Journal of Molecular Catalysis A: Chemical, 2005, 241(1/2): 194-198. |
| [12] | GUPTA Princy, PAUL Satya. Solid acids: Green alternatives for acid catalysis[J]. Catalysis Today, 2014, 236: 153-170. |
| [13] | 王政. 《“十四五”工业绿色发展规划》提出全面提升绿色制造水平[J]. 企业观察家, 2023(4): 41. |
| WANG Zheng. The“14th Five-Year Plan” for industrial green development proposes to comprehensively improve the level of green manufacturing[J]. Enterprise Observer, 2023(4): 41. | |
| [14] | 刘杰. 欧盟REACH制度与我国化学品污染防治法律制度比较研究[D]. 贵阳: 贵州民族大学, 2020. |
| LIU Jie. Comparative study on the Eu reach system and legal system for the prevention and control of chemical pollution in China[D]. Guiyang: Guizhou Minzu University, 2020. | |
| [15] | HUSEYNOVA Galina, Gulbeniz МUХTАRОVА, ALIYEVA Nushaba, et al. Zeolite-containing catalysts in alkylation processes[J]. Catalysis Research, 2022, 2(3): 1-12. |
| [16] | PRIMO Ana, GARCIA Hermenegildo. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. |
| [17] | COLÓN G, FERINO I, ROMBI E, et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites. Part 1: HY zeolites[J]. Applied Catalysis A: General, 1998, 168(1): 81-92. |
| [18] | FERINO I, MONACI R, ROMBI E, et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites Part Ⅱ: Beta zeolites[J]. Applied Catalysis A: General, 1999, 183(2): 303-316. |
| [19] | CUTRUFELLO M G, FERINO I, MONACI R, et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites Part Ⅲ. Mordenites[J]. Applied Catalysis A: General, 2003, 241(1/2): 91-111. |
| [20] | LIU Zhongmin, MOREAU Patrice, FAJULA François. Liquid phase selective alkylation of naphthalene with t-butanol over large pore zeolites[J]. Applied Catalysis A: General, 1997, 159(1/2): 305-316. |
| [21] | LIU Saisai, ZHU Mingqiao, IQBAL Mudassir. Research progress on stability of solid acid catalysts[J]. Catalysis Surveys from Asia, 2020, 24(3): 196-206. |
| [22] | WANG Linjie, MENG Xuan, SHI Li, et al. Application of solid acid catalysts in naphthalene alkylation reaction[J]. Journal of Porous Materials, 2025, 32: 705-715. |
| [23] | LI Yuanyuan, CHEN Chen, TANG Qiong, et al. Synthesis of multi-butylnaphthalene base oils catalyzed by trifluoromethanesulfonic acid and its lubricating properties[J]. Lubricants, 2023, 11(4): 156. |
| [24] | SHIMADA Keizo, NAGAHAMA Shizuo. Ethylation and transethylation of naphthalene[J]. Bulletin of the Chemical Society of Japan, 1975, 48(11): 3306-3308. |
| [25] | TANG Zhongqiang, ZHAO Siyuan, ZHAO Xiao, et al. “ZnAlCrO x &HZSM-5” bifunctional catalyst for one-step alkylation of naphthalene and syngas[J]. Fuel, 2023, 332: 126093. |
| [26] | LI Yetong, HE Kailong, ZHAO Siyuan, et al. Highly selective production of 2-methylnaphthalene by CO2 hydrogenation and naphthalene alkylation[J]. Chemical Engineering Journal, 2024, 501: 157839. |
| [27] | SIMONS Joseph H. Alkylation of an acyclic organic compound with an alkylation agent using hydrogen fluoride as catalyst:US2423470A[P]. 1947-07-08. |
| [28] | VESELY Jerome A. Hf alkylation of naphthalene: US3637884A[P]. 1972-01-25. |
| [29] | 郭海涛, 乔卫红, 李宗石. AlCl3催化合成长链烷基萘产物分析与反应机理研究[J]. 大连理工大学学报, 2003, 43(4): 424-427. |
| GUO Haitao, QIAO Weihong, LI Zongshi. Research on analysis of products and synthesis mechanism of long chain alkylnaphthalenes catalyzed by AlCl3 [J]. Journal of Dalian University of Technology, 2003, 43(4): 424-427. | |
| [30] | 赵忠奎, 乔卫红, 李化民, 等. β-甲基萘与长链烯烃烷基化研究[J]. 大连理工大学学报, 2004, 44(1): 39-43. |
| ZHAO Zhongkui, QIAO Weihong, LI Huamin, et al. Study of long-chain alkylation of β-methylnaphthalene with olefins[J]. Journal of Dalian University of Technology, 2004, 44(1): 39-43. | |
| [31] | 汪廷贵, 张乐涛, 蔡国星, 等. 一种烷基萘基础油的合成及润滑性能研究[J]. 石油炼制与化工, 2013, 44(11): 96-99. |
| WANG Tinggui, ZHANG Letao, CAI Guoxing, et al. Study on synthesis of alkyl naphthalene base oils and their lubricating properties[J]. Petroleum Processing and Petrochemicals, 2013, 44(11): 96-99. | |
| [32] | 吾满江·艾力, 汪廷贵, 蔡国星, 等. 一种烷基萘型润滑基础油的制备方法: CN102965175A[P]. 2013-03-13. |
| AILI Wumanjiang, WANG Tinggui, CAI Guoxing, et al. Method for preparing alkyl naphthalene type lubrication base oil: CN102965175A[P]. 2013-03-13. | |
| [33] | 宋上飞, 刘青才, 吕升阳. 三氟甲磺酸催化萘烷基化研究[J]. 石油炼制与化工, 2018, 49(5): 71-74. |
| SONG Shangfei, LIU Qingcai, Shengyang LYU. Alkylation of naphthalene catalyzed by trifluoromethanesulfonic acid[J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 71-74. | |
| [34] | 洪显忠, 李鹏飞, 宋上飞, 等. 一种制备烷基萘的方法及其应用: CN104817419B[P]. 2017-03-01. |
| HONG Xianzhong, LI Pengfei, SONG Shangfei, et al. Method for preparing alkyl naphthalene and application: CN104817419B[P]. 2017-03-01. | |
| [35] | LI Lei, ZHAO Xinrui, CHEN Chen, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
| [36] | 刘通,乔韦军,赵思萌,等. 离子液体催化合成长链烷基萘基础油及其摩擦学性能[J]. 化工进展, 2025, 44(9): 5277-5284. |
| LIU Tong, QIAO Weijun, ZHAO Simeng, et al. Synthesis of long-chain alkyl naphthalene base oils catalyzed by ionic liquids and its lubricating properties[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5277-5284. | |
| [37] | YANG Tian, WANG Fajun, HUANG Jinpei, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960. |
| [38] | 强敏, 林惠珊, 柯昌美, 等. SO 4 2 - -TiO2固体超酸催化合成二异丙基萘[J]. 武汉科技大学学报(自然科学版), 2001, 24(4): 374-376. |
| QIANG Min, LIN Huishan, KE Changmei, et al. Synthesis of diisopropylnaphthalene over SO 4 2 - -TiO2 solid superacid[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2001, 24(4): 374-376. | |
| [39] | 李鹏, 张东恒, 魏朝良, 等. 固体超强酸催化合成长链烷基萘的研究[J]. 润滑油, 2017, 32(4): 29-32. |
| LI Peng, ZHANG Dongheng, WEI Chaoliang, et al. Study on the synthesis of long-chain alkylated naphthalene by SO 4 2 - /TiO2 solid super acid[J]. Lubricating Oil, 2017, 32(4): 29-32. | |
| [40] | YADAV Ganapati D, SALGAONKAR Sanket S. Alkylation of naphthalene with isopropanol over a novel catalyst UDCaT-4: Insight into selectivity to 2,6-diisopropylnaphthalene and its kinetics[J]. Applied Catalysis A: General, 2005, 296(2): 251-256. |
| [41] | LUCAS Nishita, BORDOLOI Ankur, AMRUTE Amol P, et al. A comparative study on liquid phase alkylation of 2-methylnaphthalene with long chain olefins using different solid acid catalysts[J]. Applied Catalysis A: General, 2009, 352(1/2): 74-80. |
| [42] | 梁宇翔, 焦广文. 长链烷基萘合成工艺研究[J]. 石油炼制与化工, 2009, 40(3): 22-25. |
| LIANG Yuxiang, JIAO Guangwen. Study on the preparation of long chain alkylated naphthalenes[J]. Petroleum Processing and Petrochemicals, 2009, 40(3): 22-25. | |
| [43] | 焦广文, 梁宇翔, 陈晓伟, 等. 制备长链烷基萘的方法:CN101205161[P]. 2008-06-25. |
| JIAO Guangwen, LIANG Yuxiang, CHEN Xiaowei, et al. Method for preparing long chain alkyl naphthalene: CN101205161[P]. 2008-06-25. | |
| [44] | ZHOU Shunli, ZHANG Chengxi, LI Yongxiang, et al. A facile way to improve zeolite Y-based catalysts’ properties and performance in the isobutane-butene alkylation reaction[J]. RSC Advances, 2020, 10(49): 29068-29076. |
| [45] | 侯雅聪, 张成喜, 李永祥. HY分子筛酸密度对催化异丁烷-丁烯烷基化反应性能的影响[J]. 石油学报(石油加工), 2019, 35(4): 744-750. |
| HOU Yacong, ZHANG Chengxi, LI Yongxiang. Effects of acid density on the catalytic performance of HY zeolite in the isobutene-butene alkylation reaction[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(4): 744-750. | |
| [46] | 刘创新, 张成喜, 任奎, 等. 分子筛结构与直链烷基苯催化合成性能的构效关系[J]. 石油学报(石油加工), 2023, 39(1): 23-34. |
| LIU Chuangxin, ZHANG Chengxi, REN Kui, et al. Structure-activity relationship between zeolite structure and catalytic synthesis of linear alkylbenzene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(1): 23-34. | |
| [47] | WANG Yongchao, KIKHTYANIN O V, LI Cheng, et al. Synthesis of nanosized ZSM-5 zeolites by different methods and their catalytic performance in the alkylation of naphthalene[J]. Petroleum Chemistry, 2021, 61(3): 394-406. |
| [48] | IVANOVA I I, KUZNETSOV A S, KNYAZEVA E E, et al. Design of hierarchically structured catalysts by mordenites recrystallization: Application in naphthalene alkylation[J]. Catalysis Today, 2011, 168(1): 133-139. |
| [49] | SUGI Yoshihiro, MAEKAWA Hiroyoshi, HASEGAWA Yukio, et al. The alkylation of naphthalene over three-dimensional large pore zeolites: The influence of zeolite structure and alkylating agent on the selectivity for dialkylnaphthalenes[J]. Catalysis Today, 2008, 132(1/2/3/4): 27-37. |
| [50] | SUGI Yoshihiro, ANAND Chokkalingam, SUBRAMANIAM Vishnu Priya, et al. The isopropylation of naphthalene with propene over H-mordenite: The catalysis at the internal and external acid sites[J]. Journal of Molecular Catalysis A: Chemical, 2014, 395: 543-552. |
| [51] | 郭海涛, 梁燕, 乔卫红, 等. HY分子筛催化合成长链烷基萘[J]. 石油化工, 2003, 32(3): 182-186. |
| GUO Haitao, LIANG Yan, QIAO Weihong, et al. Alkylation of naphthalene with long chain olefins on zeolite catalyst[J]. Petrochemical Technology, 2003, 32(3): 182-186. | |
| [52] | WANG Mengke, KUAI Leiting, SHI Li, et al. Catalytic performance and industrial test of HY zeolite for alkylation of naphthalene and α- tetradecene[J]. New Journal of Chemistry, 2022, 46(5): 2290-2299. |
| [53] | 缪宝吉. 烷基萘合成及其在橡胶中的应用研究[D]. 青岛:中国石油大学(华东), 2020. |
| MIAO Baoji. Study on the synthesis of alkyl naphthalene and its application in rubber[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| [54] | 刘佳, 邵倩, 杨雄发, 等. 稀土固体超强酸催化D4和D 4 H 开环共聚合制备二甲基含氢硅油[J]. 高分子材料科学与工程, 2015, 31(4): 11-16. |
| LIU Jia, SHAO Qian, YANG Xiongfa, et al. Preparation of methyl hydrogen silicone fluids via ring-opening copolymerization of D4 with D 4 H catalyzed with rare earth solid super acid[J]. Polymer Materials Science & Engineering, 2015, 31(4): 11-16. | |
| [55] | 蔡晓兰, 方岩雄, 汪伟彬, 等. 一种负载型催化剂及其制备方法与催化长链烷基萘的合成方法: CN105289747A[P]. 2016-02-03. |
| CAI Xiaolan, FANG Yanxiong, WANG Weibin, et al. Supported catalyst and preparation method thereof, and synthesis method for catalyzing long-chain alkyl naphthalene: CN105289747A[P]. 2016-02-03. | |
| [56] | 温云辉. 杂多酸基催化剂设计及其催化制备高附加值化学品性能研究[D]. 北京: 北京化工大学, 2021. |
| WEN Yunhui. Construction of heteropolyacid baced solid acid catalyst and its catalytic performance[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| [57] | 王子建, 付强, 张成喜, 等. 草酸脱铝NaY分子筛结晶度的变化规律[J]. 石油学报(石油加工), 2018, 34(4): 651-657. |
| WANG Zijian, FU Qiang, ZHANG Chengxi, et al. Changes of crystallinity during dealumination of NaY zeolite by oxalic acid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(4): 651-657. | |
| [58] | 栗同林, 刘希尧. 萘与丙烯在脱铝丝光沸石上的烷基化反应[J]. 催化学报, 2000, 21(6): 597-599. |
| LI Tonglin, LIU Xiyao. Alkylation of naphthalene with propene over dealuminated mordenite[J]. Chinese Journal of Catalysis, 2000, 21(6): 597-599. | |
| [59] | WANG Yingli, XU Lei, YU Zhengxi, et al. Selective alkylation of naphthalene with tert-butyl alcohol over HY zeolites modified with acid and alkali[J]. Catalysis Communications, 2008, 9(10): 1982-1986. |
| [60] | LIN Meng, ZHOU Shunli, ZHANG Chengxi, et al. An efficient preparation method of Y zeolite-based catalyst for isobutane-butene alkylation[J]. Fuel, 2022, 328: 125371. |
| [61] | 竹锦. 长链烷基萘基础油制备及其润滑性能研究[D]. 常州: 常州大学, 2022. |
| ZHU Jin. Preparation of long chain alkyl naphthalene base oil and its lubricating performance[D]. Changzhou: Changzhou University, 2022. | |
| [62] | ANAND R, MAHESWARI R, GORE K U, et al. Isopropylation of naphthalene over modified faujasites: Effect of steaming temperature on activity and selectivity[J]. Applied Catalysis A: General, 2003, 249(2): 265-272. |
| [63] | 张成喜, 彭凯, 李永祥. 负载型Ni/Y催化剂性能与结构研究[J]. 石油炼制与化工, 2016, 47(2): 38-41. |
| ZHANG Chengxi, PENG Kai, LI Yongxiang. Properties and structure study of Ni/Y catalyst[J]. Petroleum Processing and Petrochemicals, 2016, 47(2): 38-41. | |
| [64] | REN Kui, JIA Fuxian, ZHANG Chengxi, et al. Ni as the promoter on hydrogen spillover for better hydrogenative regeneration on Pt/Y based catalysts[J]. Fuel, 2023, 335: 127047. |
| [65] | KUAI Leiting, WANG Mengke, MENG Xuan, et al. W modified HY zeolite as catalyst for alkylation of aromatic[J]. Catalysis Letters, 2022, 152(8): 2480-2490. |
| [66] | 宋彦磊, 付红莉, 黄崇品, 等. 分子筛催化剂上萘与2-丁烯的烷基化反应[J]. 石油化工,2014, 43(2): 144-149. |
| SONG Yanlei, FU Hongli, HUANG Chongpin, et al. Alkylation of naphthalene with 2-butene over zeolite catalysts[J]. Petrochemical Technology, 2014, 43(2): 144-149. | |
| [67] | BANU Marimuthu, LEE Young Hye, MAGESH Ganesan, et al. Isopropylation of naphthalene by isopropanol over conventional and Zn-and Fe-modified USY zeolites[J]. Catalysis Science & Technology, 2014, 4(1): 120-128. |
| [68] | ZHANG Mingjin, ZHENG Anmin, DENG Feng, et al. Surface chemical modification of zeolites and their catalytic performance for naphthalene alkylation[J]. Science in China Series B: Chemistry, 2003, 46(2): 216-223. |
| [69] | HAJIMIRZAEE Saeed, LEEKE Gary A, WOOD Joseph. Modified zeolite catalyst for selective dialkylation of naphthalene[J]. Chemical Engineering Journal, 2012, 207/208: 329-341. |
| [70] | HUANG Zhihua, ZHANG Jie, LI Peidong, et al. Tert-butylation of naphthalene by tertiary butanol over HY zeolite and cerium-modified HY catalysts[J]. Catalysis Science & Technology, 2017, 7(20): 4700-4709. |
| [71] | SUGI Y, NAKAJIMA K, TAWADA S, et al. Effects of ceria-modification of H-mordenite on the isopropylation of naphthalene and biphenyl[J]. Studies in Surface Science and Catalysis, 1999, 125: 359-366. |
| [72] | SUGI Yoshihiro, CHAKKOLINGAM Anand, JOSEPH Stalin, et al. Lanthanide oxide modified H-mordenites: Deactivation of external acid sites in the isopropylation of naphthalene[J]. Microporous and Mesoporous Materials, 2016, 230: 217-226. |
| [73] | KAMALAKAR G, KULKARNI S J, RAGHAVAN K V, et al. Isopropylation of naphthalene over modified HMCM-41, HY and SAPO-5 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1999, 149(1/2): 283-288. |
| [74] | 李志颖, 杜晓辉, 郑云锋, 等. Y分子筛的氢转移反应性能及其调控机制[J]. 石油化工高等学校学报, 2024, 37(5): 38-45. |
| LI Zhiying, DU Xiaohui, ZHENG Yunfeng, et al. Hydrogen transfer reaction performance and regulation mechanism of Y zeolites [J]. Journal of Petrochemical Universities, 2024, 37(5): 38-45. | |
| [75] | 覃正兴, 申宝剑. 水热处理过程中Y分子筛的骨架脱铝、补硅及二次孔的形成[J]. 化工学报, 2016, 67(8): 3160-3169. |
| QIN Zhengxing, SHEN Baojian. Dealumination, silicon reinsertion, and secondary pore formation in steaming of zeolite Y[J]. CIESC Journal, 2016, 67(8): 3160-3169. |
| [1] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [2] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [3] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [4] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [5] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [6] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [7] | CHEN Songsong, BAO Aili, HUO Feng, HOU Yahui, CUI Gaijing, ZHANG Junping. Application of artificial intelligence (AI) in the design of complex chemical engineering processes: Status, challenges and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4821-4837. |
| [8] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [9] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [10] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [11] | JIA Ziting, CUI Ziyuan, WANG Yufei. Optimization strategy for regularizing flexible plant layout [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4669-4679. |
| [12] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [13] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [14] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [15] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |