Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4022-4031.DOI: 10.16085/j.issn.1000-6613.2024-0811
• Materials science and technology • Previous Articles
XU Ruting1(
), ZHAO Jian1, SUN Kang1, LU Xincheng1(
), JIANG Jianchun1, SU Zhonggao2, LIU Junli1, CHEN Zibiao2, SU Zihan2
Received:2024-05-16
Revised:2024-08-20
Online:2025-08-04
Published:2025-07-25
Contact:
LU Xincheng
徐茹婷1(
), 赵剑1, 孙康1, 卢辛成1(
), 蒋剑春1, 苏忠高2, 刘军利1, 陈子标2, 苏子寒2
通讯作者:
卢辛成
作者简介:徐茹婷(1994—),女,助理研究员,研究方向为炭质吸附材料的制备与应用。E-mail:819275472@qq.com。
基金资助:CLC Number:
XU Ruting, ZHAO Jian, SUN Kang, LU Xincheng, JIANG Jianchun, SU Zhonggao, LIU Junli, CHEN Zibiao, SU Zihan. Modification of activated carbon and its purification performance for simulated waste lubricating oil[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4022-4031.
徐茹婷, 赵剑, 孙康, 卢辛成, 蒋剑春, 苏忠高, 刘军利, 陈子标, 苏子寒. 活性炭改性及其对模拟废润滑油的净化性能[J]. 化工进展, 2025, 44(7): 4022-4031.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0811
| 样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 中孔孔容/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|---|---|
| AC | 1860 | 1.390 | 0.489 | 0.901 | 3.55 |
| AC-H2O2 | 1004 | 0.692 | 0.367 | 0.325 | 2.78 |
| AC-HNO3 | 1274 | 0.990 | 0.455 | 0.535 | 3.08 |
| AC-NH3·H2O | 1873 | 1.623 | 0.674 | 0.949 | 3.83 |
| AC-EDTA-Na2 | 1924 | 1.664 | 0.692 | 0.972 | 3.37 |
| 样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 中孔孔容/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|---|---|
| AC | 1860 | 1.390 | 0.489 | 0.901 | 3.55 |
| AC-H2O2 | 1004 | 0.692 | 0.367 | 0.325 | 2.78 |
| AC-HNO3 | 1274 | 0.990 | 0.455 | 0.535 | 3.08 |
| AC-NH3·H2O | 1873 | 1.623 | 0.674 | 0.949 | 3.83 |
| AC-EDTA-Na2 | 1924 | 1.664 | 0.692 | 0.972 | 3.37 |
| 样品 | C质量分数/% | H质量分数/% | O质量分数/% | N质量分数/% |
|---|---|---|---|---|
| AC | 70.38 | 1.41 | 19.34 | 1.37 |
| AC-H2O2 | 59.41 | 2.04 | 32.73 | 1.21 |
| AC-HNO3 | 57.01 | 1.84 | 32.99 | 3.16 |
| AC-NH3·H2O | 74.37 | 1.54 | 19.50 | 2.44 |
| AC-EDTA-Na2 | 73.61 | 1.70 | 18.43 | 2.09 |
| 样品 | C质量分数/% | H质量分数/% | O质量分数/% | N质量分数/% |
|---|---|---|---|---|
| AC | 70.38 | 1.41 | 19.34 | 1.37 |
| AC-H2O2 | 59.41 | 2.04 | 32.73 | 1.21 |
| AC-HNO3 | 57.01 | 1.84 | 32.99 | 3.16 |
| AC-NH3·H2O | 74.37 | 1.54 | 19.50 | 2.44 |
| AC-EDTA-Na2 | 73.61 | 1.70 | 18.43 | 2.09 |
| 官能团 | 峰 | 结合能/eV | 官能团相对含量/% | ||||
|---|---|---|---|---|---|---|---|
| AC | AC-H2O2 | AC-HNO3 | AC-NH3·H2O | AC-EDTA-Na2 | |||
| C 1s | |||||||
| C—C/C | A | 284.6 | 75.56 | 72.00 | 72.54 | 78.73 | 76.31 |
| C—OH | B | 286.3 | 9.47 | 13.02 | 11.80 | 13.25 | 13.40 |
| C | C | 287.4 | 4.87 | 3.44 | 5.16 | 0.69 | 1.37 |
| —COOH | D | 288.9 | 9.10 | 11.54 | 10.51 | 7.34 | 8.92 |
| N 1s | |||||||
| N-6 | E | 398.9 | 46.53 | 10.55 | 14.60 | 53.52 | 56.09 |
| amino-N | F | 399.4 | 10.96 | 29.50 | 0.00 | 0.00 | 8.24 |
| N-5 | G | 400.4 | 19.50 | 28.51 | 15.10 | 17.32 | 20.96 |
| N-Q | H | 401.5 | 16.13 | 26.27 | 17.73 | 10.42 | 3.74 |
| —NO x | I | 405.5 | 6.88 | 5.17 | 52.57 | 18.73 | 10.97 |
| 官能团 | 峰 | 结合能/eV | 官能团相对含量/% | ||||
|---|---|---|---|---|---|---|---|
| AC | AC-H2O2 | AC-HNO3 | AC-NH3·H2O | AC-EDTA-Na2 | |||
| C 1s | |||||||
| C—C/C | A | 284.6 | 75.56 | 72.00 | 72.54 | 78.73 | 76.31 |
| C—OH | B | 286.3 | 9.47 | 13.02 | 11.80 | 13.25 | 13.40 |
| C | C | 287.4 | 4.87 | 3.44 | 5.16 | 0.69 | 1.37 |
| —COOH | D | 288.9 | 9.10 | 11.54 | 10.51 | 7.34 | 8.92 |
| N 1s | |||||||
| N-6 | E | 398.9 | 46.53 | 10.55 | 14.60 | 53.52 | 56.09 |
| amino-N | F | 399.4 | 10.96 | 29.50 | 0.00 | 0.00 | 8.24 |
| N-5 | G | 400.4 | 19.50 | 28.51 | 15.10 | 17.32 | 20.96 |
| N-Q | H | 401.5 | 16.13 | 26.27 | 17.73 | 10.42 | 3.74 |
| —NO x | I | 405.5 | 6.88 | 5.17 | 52.57 | 18.73 | 10.97 |
| 样品 | 磨损金属元素去除率/% | 磨损金属元素总吸附量/mg·g-1 | 酸值去除率/% | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | ||||
| AC | 52±1.73 | 84±1.52 | 54±1.15 | 56±1.00 | 2.46±0.02 | 95.34±2.32 | 27.22±0.96 |
| AC-H2O2 | 14±1.15 | 72±0.58 | 22±2.00 | 20±1.53 | 1.28±0.02 | 95.34±0.00 | 13.55±0.19 |
| AC-HNO3 | 44±0.08 | 92±1.53 | 54±3.78 | 46±1.73 | 2.36±0.07 | 95.34±2.32 | 22.44±0.77 |
| AC-NH3·H2O | 60±2.65 | 92±2.00 | 70±1.73 | 64±1.16 | 2.86±0.01 | >97.67±0.00 | 32.88±0.39 |
| AC-EDTA-Na2 | 72±2.88 | 90±1.00 | 68±1.52 | 64±2.52 | 2.94±0.06 | >97.67±0.00 | 41.55±0.39 |
| 样品 | 磨损金属元素去除率/% | 磨损金属元素总吸附量/mg·g-1 | 酸值去除率/% | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | ||||
| AC | 52±1.73 | 84±1.52 | 54±1.15 | 56±1.00 | 2.46±0.02 | 95.34±2.32 | 27.22±0.96 |
| AC-H2O2 | 14±1.15 | 72±0.58 | 22±2.00 | 20±1.53 | 1.28±0.02 | 95.34±0.00 | 13.55±0.19 |
| AC-HNO3 | 44±0.08 | 92±1.53 | 54±3.78 | 46±1.73 | 2.36±0.07 | 95.34±2.32 | 22.44±0.77 |
| AC-NH3·H2O | 60±2.65 | 92±2.00 | 70±1.73 | 64±1.16 | 2.86±0.01 | >97.67±0.00 | 32.88±0.39 |
| AC-EDTA-Na2 | 72±2.88 | 90±1.00 | 68±1.52 | 64±2.52 | 2.94±0.06 | >97.67±0.00 | 41.55±0.39 |
| 项目 | 磨损金属元素吸附容量 | 氧化污染物去除率 |
|---|---|---|
| 比表面积 | 0.892* | 0.895* |
| 总孔容 | 0.933* | 0.950* |
| 微孔孔容 | 0.895* | 0.952* |
| 中孔孔容 | 0.913* | 0.909* |
| 0.015 | 0.199 | |
| -0.448 | -0.621 | |
| COOH | 0.373 | 0.250 |
| N-6 | 0.840 | 0.902* |
| amino-N | -0.841 | -0.588 |
| N-5 | -0.741 | -0.439 |
| N-Q | -0.934* | -0.995** |
| —NO x | 0.172 | -0.106 |
| 项目 | 磨损金属元素吸附容量 | 氧化污染物去除率 |
|---|---|---|
| 比表面积 | 0.892* | 0.895* |
| 总孔容 | 0.933* | 0.950* |
| 微孔孔容 | 0.895* | 0.952* |
| 中孔孔容 | 0.913* | 0.909* |
| 0.015 | 0.199 | |
| -0.448 | -0.621 | |
| COOH | 0.373 | 0.250 |
| N-6 | 0.840 | 0.902* |
| amino-N | -0.841 | -0.588 |
| N-5 | -0.741 | -0.439 |
| N-Q | -0.934* | -0.995** |
| —NO x | 0.172 | -0.106 |
| 改性试剂浓度 | 磨损金属元素去除率/% | 磨损金属总吸附容量/mg·g-1 | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | |||
| 5% NH3·H2O | 62±0.58 | 92±0.58 | 68±1.00 | 64±2.08 | 2.86±0.02 | 31.33±1.33 |
| 10% NH3·H2O | 60±2.65 | 92±2.00 | 70±1.73 | 64±1.16 | 2.86±0.01 | 32.88±0.39 |
| 15% NH3·H2O | 64±1.53 | 94±1.15 | 74±0.58 | 68±2.65 | 3.00±0.05 | 46.22±1.02 |
| 0.01mol/L EDTA-Na2 | 60±2.00 | 90±2.31 | 74±0.58 | 64±1.53 | 2.84±0.03 | 35.11±1.68 |
| 0.03mol/L EDTA-Na2 | 72±1.15 | 96±0.00 | 76±2.52 | 70±1.53 | 3.14±0.04 | 53.55±1.39 |
| 0.05mol/LEDTA-Na2 | 72±2.88 | 90±1.00 | 68±1.52 | 64±2.52 | 2.94±0.06 | 41.55±0.39 |
| 改性试剂浓度 | 磨损金属元素去除率/% | 磨损金属总吸附容量/mg·g-1 | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | |||
| 5% NH3·H2O | 62±0.58 | 92±0.58 | 68±1.00 | 64±2.08 | 2.86±0.02 | 31.33±1.33 |
| 10% NH3·H2O | 60±2.65 | 92±2.00 | 70±1.73 | 64±1.16 | 2.86±0.01 | 32.88±0.39 |
| 15% NH3·H2O | 64±1.53 | 94±1.15 | 74±0.58 | 68±2.65 | 3.00±0.05 | 46.22±1.02 |
| 0.01mol/L EDTA-Na2 | 60±2.00 | 90±2.31 | 74±0.58 | 64±1.53 | 2.84±0.03 | 35.11±1.68 |
| 0.03mol/L EDTA-Na2 | 72±1.15 | 96±0.00 | 76±2.52 | 70±1.53 | 3.14±0.04 | 53.55±1.39 |
| 0.05mol/LEDTA-Na2 | 72±2.88 | 90±1.00 | 68±1.52 | 64±2.52 | 2.94±0.06 | 41.55±0.39 |
| 样品 | 磨损金属元素去除率/% | 磨损金属元素总吸附容量/mg·g-1 | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | |||
| AC-EDTA-Na2-0.03 | 72±1.15 | 96±0.00 | 76±2.52 | 70±1.53 | 3.14±0.04 | 53.55±1.39 |
| 一次再生 | 70±0.58 | 92±2.08 | 72±1.00 | 68±3.00 | 3.02±0.06 | 40.00±0.67 |
| 二次再生 | 62±0.58 | 90±1.00 | 64±3.21 | 58±0.00 | 2.74±0.03 | 32.89±0.77 |
| 样品 | 磨损金属元素去除率/% | 磨损金属元素总吸附容量/mg·g-1 | 氧化污染物去除率/% | |||
|---|---|---|---|---|---|---|
| Fe | Cu | Pb | Al | |||
| AC-EDTA-Na2-0.03 | 72±1.15 | 96±0.00 | 76±2.52 | 70±1.53 | 3.14±0.04 | 53.55±1.39 |
| 一次再生 | 70±0.58 | 92±2.08 | 72±1.00 | 68±3.00 | 3.02±0.06 | 40.00±0.67 |
| 二次再生 | 62±0.58 | 90±1.00 | 64±3.21 | 58±0.00 | 2.74±0.03 | 32.89±0.77 |
| [1] | SARKAR Sayantan, DATTA Deepshikha, DEEPAK K S, et al. Comprehensive investigation of various re-refining technologies of used lubricating oil: A review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 1935-1965. |
| [2] | DENG Zhenkun, YU Tong, LI Shuai, et al. Effects of 2,6-di-tert-butyl-hydroxytotulene and mineral-lubricant base oils on microbial communities during lubricants biodegradation[J]. Environmental Research, 2023, 231: 116120. |
| [3] | GHANNAM Mamdouh T, SELIM Mohamed Y E, KHEDR Mona A M, et al. Investigation of the rheological properties of waste and pure lube oils[J]. Fuel, 2021, 298: 120774. |
| [4] | PINHEIRO Carolina T, QUINA Margarida J, GANDO-FERREIRA Licínio M. Management of waste lubricant oil in Europe: A circular economy approach[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(18): 2015-2050. |
| [5] | 宋明明. 废弃润滑油资源化利用技术研究[D]. 西安: 西安石油大学, 2020. |
| SONG Mingming. Research on waste oil resource utilization technology[D]. Xi’an: Xi’an Shiyou University, 2020. | |
| [6] | 彭怡, 伍钦. 废润滑油回收利用技术研究进展[J]. 广州化工, 2014, 42(9): 28-31. |
| PENG Yi, WU Qin. Research development of waste lubricant oil recycle technology[J]. Guangzhou Chemical Industry, 2014, 42(9): 28-31. | |
| [7] | 柳云骐, 刘赟, 陈艳巨, 等. 加氢法再生废润滑油工艺研究进展[J]. 重庆工商大学学报(自然科学版), 2017, 34(3): 107-111. |
| LIU Yunqi, LIU Yun, CHEN Yanju, et al. Research progress in the process of refining waste lubricating oil by hydrogenation[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2017, 34(3): 107-111. | |
| [8] | Emmanuela KWAO-BOATENG, Terza ANOKYE-POKU, AGYEMANG Anthony N P, et al. Re-refining used engine oil in Ghana using solvent extraction and acid-clay treatment[J]. International Journal of Chemical Engineering, 2022, 2022(1): 6344409. |
| [9] | 徐茹婷, 王傲, 孙康. 废润滑油吸附再生研究进展[J]. 生物质化学工程, 2021, 55(4): 59-65. |
| XU Ruting, WANG Ao, SUN Kang. Research progress in absorption regeneration of waste lubricant[J]. Biomass Chemical Engineering, 2021, 55(4): 59-65. | |
| [10] | 施俊合, 武怡, 刘介平, 等. 废航空润滑油再生工艺研究[J]. 应用化工, 2023, 52(1): 8-12, 16. |
| SHI Junhe, WU Yi, LIU Jieping, et al. Study on the regeneration process of used aviation lubricating oil[J]. Applied Chemical Industry, 2023, 52(1): 8-12, 16. | |
| [11] | SHABANZADE Hooman, SALEM Amin, SALEM Shiva. Efficient removal of contaminants from waste lubricant oil by nano-porous bentonite produced via microwave-assisted rapid activation: Process identifications and optimization[J]. Environmental Science and Pollution Research, 2019, 26(23): 23257-23267. |
| [12] | 蒋剑春, 孙康. 活性炭制备技术及应用研究综述[J]. 林产化学与工业, 2017, 37(1): 1-13. |
| JIANG Jianchun, SUN Kang. Review on preparation technology of activated carbon and its application[J]. Chemistry and Industry of Forest Products, 2017, 37(1): 1-13. | |
| [13] | FILHO José Lima Assunção, DE MOURA Lyzette Gonçalves Moraes, DA SILVA RAMOS Antonio Carlos. Polycyclic aromatic hydrocarbons (PAHs) adsorption on solid surfaces applied to waste lubricant oils recovery process[J]. The Canadian Journal of Chemical Engineering, 2010, 88(3): 411-416. |
| [14] | 杨茜雯, 陈文艺. 改性活性炭再生废润滑油的研究[J]. 现代化工, 2017, 37(9): 91-94, 96. |
| YANG Qianwen, CHEN Wenyi. Study on application of modified activated carbon in regeneration of waste lubricating oil[J]. Modern Chemical Industry, 2017, 37(9): 91-94, 96. | |
| [15] | YU Chang, QIU Jieshan, SUN Yufeng, et al. Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: Effect of surface chemistry[J]. Journal of Porous Materials, 2008, 15(2): 151-157. |
| [16] | 徐茹婷, 赵剑, 孙康, 等. 活性炭对润滑油中磨损元素吸附性能的研究[J]. 林产化学与工业, 2022, 42(4): 25-32. |
| XU Ruting, ZHAO Jian, SUN Kang, et al. The adsorption performance of wear elements in lubricant by activated carbon[J]. Chemistry and Industry of Forest Products, 2022, 42(4): 25-32. | |
| [17] | Adeline LIM, CHEW Jiuan Jing, Lock Hei NGU, et al. Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution[J]. ACS Omega, 2020, 5(44): 28673-28683. |
| [18] | LI Lin, LIU Suqin, LIU Junxin. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. |
| [19] | 王幼琪, 蒋文武, 沈培智. 水热法制备掺氮活性炭及其电化学性能研究[J]. 现代化工, 2022, 42(11): 150-154. |
| WANG Youqi, JIANG Wenwu, SHEN Peizhi. Hydrothermal synthesis of nitrogen-doped activated carbon and study on its electrochemical properties[J]. Modern Chemical Industry, 2022, 42(11): 150-154. | |
| [20] | PUZIY A M, PODDUBNAYA O I, SOCHA R P, et al. XPS and NMR studies of phosphoric acid activated carbons[J]. Carbon, 2008, 46(15): 2113-2123. |
| [21] | HUANG Chen-Chia, SU Yu-Jhih. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 477-483. |
| [22] | GAO Saisai, ZHANG Yin, ZHANG Yanjun, et al. Modification of carbon nanotubes via birch reaction for enhanced HER catalyst by constructing pearl necklace-like NiCo2 P2-CNT composite[J]. Small, 2018, 14(51): 1804388. |
| [23] | 梁笑丽. β-二酮类吡啶氮氧化合物及其配合物的合成与结构研究[D]. 石家庄: 河北师范大学, 2014. |
| LIANG Xiaoli. Synthesis and structure study of β-diketone pyridine N-oxides and their coordination complexes[D]. Shijiazhuang: Hebei Normal University, 2014. | |
| [24] | RADIC Dejan B, STANOJEVIC Miroslav M, OBRADOVIC Marko O, et al. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon[J]. Thermal Science, 2017, 21(2): 1067-1081. |
| [25] | JARETEG Adam, MAGGIOLO Dario, THUNMAN Henrik, et al. Investigation of steam regeneration strategies for industrial-scale temperature-swing adsorption of benzene on activated carbon[J]. Chemical Engineering and Processing-Process Intensification, 2021, 167: 108546. |
| [1] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [2] | SUN Yan, CHEN Machao, TIAN Na, XIE Xiaoyang, LI Xiaoling, HE Jiaojie, ZHAO Xiaohong. Research on in-situ construction of TFC forward osmosis membrane by β-cyclodextrin and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3671-3682. |
| [3] | ZHANG Yiru, HAN Dongmei, MA Weifang. Research progress on iron-based composite bismuth oxyhalide magnetic materials for enhanced visible light catalytic treatment of refractory organic wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2258-2273. |
| [4] | HUANG Jiao, ZHU Yaming, YUE Jiaxing, WANG Ying, CHENG Junxia, ZHAO Xuefei. Advances in the preparation, modification and application of spherical activated carbon [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2081-2101. |
| [5] | LI Jiahao, FAN Haiming, WEI Zhiyi, CHENG Siyuan. Research progress and prospects of nanomaterials in low-permeability reservoirs [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1485-1495. |
| [6] | ZHANG Maorun, SUN Weiru, MA Tianlin, XIN Zhiling. Anti-SO2 poisoning performance of Mo-modified MnCe/SiC in low-temperature SCR denitrification [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1378-1386. |
| [7] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [8] | WANG Xueli, YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang. Interfacial modification method of MOF-based mixed matrix membrane and its gas separation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 928-940. |
| [9] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
| [10] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
| [11] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
| [12] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
| [13] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
| [14] | OU Hongxiang, MIN Zheng, XUE Honglai, CAO Haizhen, BI Haipu, WANG Junqi. Effect of hydrophobic modified magnesium oxide nanoparticles on the properties of short fluorocarbon chain foam [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5177-5184. |
| [15] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |