| [1] |
李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004: 804-1165.
|
| [2] |
邵志才. 浆态床渣油加氢技术现状与展望[J]. 石油炼制与化工, 2022, 53(11): 17-23.
|
|
SHAO Zhicai. Status and prospect of slurry bed residue hydrocracking technology[J]. Petroleum Processing and Petrochemicals, 2022, 53(11): 17-23.
|
| [3] |
张庆军, 刘文洁, 王鑫, 等. 国外渣油加氢技术研究进展[J]. 化工进展, 2015, 34(8): 2988-3002.
|
|
ZHANG Qingjun, LIU Wenjie, WANG Xin, et al. Research progress in hydroprocessing technology for imported residuum[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2988-3002.
|
| [4] |
方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1):95-104.
|
|
FANG Xiangchen. Development of residuum hydroprocessing technologies[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 95-104.
|
| [5] |
周振宇. 浆态床渣油加氢装置生产运行的分析和对策[J]. 中外能源, 2023, 28(12): 59-65.
|
|
ZHOU Zhenyu. Analysis and countermeasures for operation of slurry bed residue hydrogenation unit[J]. Sino-Global Energy, 2023, 28(12): 59-65.
|
| [6] |
倪术荣, 徐伟池, 吴显军, 等. 浆态床加氢裂化工艺技术进展[J]. 炼油与化工, 2018, 29(6): 1-3.
|
|
NI Shurong, XU Weichi, WU Xianjun, et al. Technical progress of slurry bed reactor hydrocracking progress[J]. Refining and Chemical Industry, 2018, 29(6): 1-3.
|
| [7] |
邵志才. 沸腾床渣油加氢工艺及其在炼油结构转型中的作用[J]. 石油炼制与化工, 2023, 54(6): 133-138.
|
|
SHAO Zhicai. Ebullated-bed residue hydrocracking process and its role in the structural transformation for refinary[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 133-138.
|
| [8] |
吴达, 蒋淑娇, 魏强, 等. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353.
|
|
WU Da, JIANG Shujiao, WEI Qiang, et al. Research progress on efficient utilization technology of residue in energy transition[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353.
|
| [9] |
李明丰, 吴昊, 沈宇, 等. “双碳” 背景下炼化企业高质量发展路径探讨[J]. 石油学报(石油加工), 2022, 38(3): 493-499.
|
|
LI Mingfeng, WU Hao, SHEN Yu, et al. High-quality development path for refining and chemical enterprises under the dual carbon background[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 493-499.
|
| [10] |
LAI Tingting, MAO Yichao, WANG Wei, et al. Characterization of basic nitrogen compounds isolated with FeCl3 in vacuum gas oil and its hydrotreated product[J]. Fuel, 2020, 262: 116523.
|
| [11] |
MIKHAYLOVA Polina, DE OLIVEIRA Luis P, MERDRIGNAC Isabelle, et al. Molecular analysis of nitrogen-containing compounds in vacuum gas oils hydrodenitrogenation by (ESI+/-)-FTICR-MS[J]. Fuel, 2022, 323: 124302.
|
| [12] |
王蒙恩, 田亚飞, 张智芳, 等. 环己烷、甲基环己烷和乙基环己烷脱氢反应的热力学计算[J]. 石化技术与应用, 2022, 40(4): 238-242.
|
|
WANG Meng’en, TIAN Yafei, ZHANG Zhifang, et al. Thermodynamic calculation of dehydrogenation of cyclohexane, methyl cyclohexane and ethyl cyclohexane[J]. Petrochemical Technology & Application, 2022, 40(4): 238-242.
|
| [13] |
杜峰, 陈延新, 陈小博, 等. 焦化蜡油中氮化物和芳烃分子结构的研究[J]. 石油学报(石油加工), 2017, 33(2): 326-333.
|
|
DU Feng, CHEN Yanxin, CHEN Xiaobo, et al. Study on molecular structures of nitrogen compounds and aromatics in coker gas oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(2): 326-333.
|
| [14] |
ZHANG Tao, ZHANG Linzhou, ZHOU Yasong, et al. Transformation of nitrogen compounds in deasphalted oil hydrotreating: Characterized by electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2013, 27(6): 2952-2959.
|
| [15] |
RANA Mohan S, AL-BAROOD A, BROURESLI R, et al. Effect of organic nitrogen compounds on deep hydrodesulfurization of middle distillate[J]. Fuel Processing Technology, 2018, 177: 170-178.
|
| [16] |
NGUYEN Minh-Tuan, PIRNGRUBER Gerhard D, CHAINET Fabien, et al. Indole hydrodenitrogenation over alumina and silica-alumina-supported sulfide catalysts—Comparison with quinoline[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11088-11099.
|
| [17] |
韩姝娜. 氮化物对加氢脱硫影响的机理研究[D]. 青岛:中国石油大学(华东), 2010.
|
|
HAN Shuna. Inhibition mechanisms of nitrogen compounds for hydrodesulfurization[D]. Qingdao: China University of Petroleum(East China), 2010.
|
| [18] |
GUTIÉRREZ Oliver Y, HRABAR Ana, HEIN Jennifer, et al. Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni-MoS2/γ-Al2O3 [J]. Journal of Catalysis, 2012, 295: 155-168.
|
| [19] |
ZHANG Pengfei, ZHOU Yasong, ZHANG Rongxun, et al. Effect of sulfur compounds on the hydrodenitrogenation of 1,2,3,4-tetrahydroquinoline and its intermediates over NiMo/Al2O3 catalyst[J]. Fuel, 2020, 277: 118186.
|
| [20] |
NGUYEN Minh-Tuan, Melaz TAYAKOUT-FAYOLLE, PIRNGRUBER Gerhard D, et al. Kinetic modeling of quinoline hydrodenitrogenation over a NiMo(P)/Al2O3 catalyst in a batch reactor[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9278-9288.
|
| [21] |
LIU Xiaodong, FAN Xiayun, WANG Lin, et al. Competitive adsorption between sulfur-and nitrogen-containing compounds over NiMoS nanocluster: The correlations of electronegativity, morphology and molecular orbital with adsorption strength[J]. Chemical Engineering Science, 2021, 231: 116313.
|
| [22] |
LIU Xiaodong, DING Sijia, WEI Qiang, et al. DFT insights in to the hydrodenitrogenation behavior differences between indole and quinoline[J]. Fuel, 2021, 285: 119039.
|
| [23] |
RABARIHOELA-RAKOTOVAO V, BRUNET S, PEROT G, et al. Effect of H2S partial pressure on the HDS of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMoP/Al2O3 and CoMoP/Al2O3 catalysts[J]. Applied Catalysis A: General, 2006, 306: 34-44.
|