[1] OPEC. World oil outlook[R]. Vienna:OPEC, 2018. [2] 宋官龙, 赵德智, 张志伟, 等. 渣油加氢工艺的现状及研究前景[J]. 石化技术, 2017, 7:1-3, 7. SONG G L, ZHAO D Z, ZHANG Z W, et al. Current status and research prospects of residue hydrogenation process[J]. Petrochemical Industry Technology, 2017, 7:1-3, 7. [3] 杨学萍. 国内外丙烯生产技术进展及市场分析[J]. 石油化工技术与经济, 2017, 33(6):11-15. YANG X P. Propylene production technology progress and market analysis at home and abroad[J]. Technology & Economics in Petrochemicals, 2017, 33(6):11-15. [4] 顾道斌. 增产丙烯的催化裂化工艺进展[J]. 精细石油化工进展, 2012, 13(3):49-54. GU D B. Advances in fluid catalytic cracking process for increasing propylene yield[J]. Advances in Fine Petrochemicals, 2012, 13(3):49-54. [5] 王巍, 谢朝钢. 催化裂解新技术的开发与应用[J]. 石油化工技术经济, 2005, 1(21):8-13. WANG W, XIE C G. Development and application of DCC new technology[J]. Technology & Economics in Petrochemicals, 2005, 1(21):8-13. [6] 张执刚, 谢朝钢, 朱根权. 增强型催化裂解技术试验研究[J]. 石油炼制与化工, 2010, 6(41):39-43. ZHANG Z G, XIE C G, ZHU G Q. Experimental study of DCC-plus technology[J]. Petroleum Processing and Petrochemicals, 2010, 6(41):39-43. [7] 黄晓华. 新一代增产丙烯DCC工艺催化剂DMMC-1的工业应用[J]. 石油炼制与化工, 2007, 38(10):29-32. HUANG X H. Commercial application of propylene enhanced DMMC-1 catalyst for DCC process[J]. Petroleum Processing and Petrochemicals, 2007, 38(10):29-32. [8] 张执刚, 谢朝钢, 施至诚, 等. 催化热裂解制取乙烯和丙烯的工艺研究[J]. 石油炼制与化工, 2001, 32(5):21-24. ZAHNG Z G, XIE C G, SHI Z C, et al. Study on catalytic pyrolysis process for ethylene and propylene production[J]. Petroleum Processing and Petrochemicals, 2001, 32(5):21-24. [9] 侯典国, 汪夑卿, 谢朝钢, 等.催化热裂解工艺机理及影响因素[J]. 乙烯工业, 2002, 14(2):1-5. HOU D G, WANG X Q, XIE C G, et al. Reaction mechanism and influential factors of catalytic pyrolysis process[J]. Ethylene Industry, 2002, 14(2):1-5. [10] 王明党, 沙颖逊, 崔中强, 等. 重油接触裂解制乙烯的HCC工艺研究[J]. 河南石油, 2002, 16(3):49-52. WANG M D, SHA Y X, CUI Z Q, et al. A research on HCC process for ethylene manufacturing[J]. Henan Petroleum, 2002, 16(3):49-52. [11] 彭松梓, 王国良, 刘金龙. 重油接触裂解制乙烯工艺裂解深度的控制[J]. 河南石油, 2003, 17(5):59-62. PENG S Z, WANG G L, LIU J L. How to control cracking level of heavy oil contact cracking process[J]. Henan Petroleum, 2003, 17(5):59-62. [12] SAUDI Arabian Oil Company. Integrated hydroprocessing, steam pyrolysis and catalytic cracking process to produce petrochemicals from crude oil:US20130248419A1[P]. 2013-09-26. [13] SABIC Global Tech. Process for upgrading refinery heavy residues to petrochemicals:EP3017024B1[P]. 2017-12-27. [14] 盛虹石化. 盛虹炼化(连云港)有限公司炼化一体化项目环境影响报告书[EB/OL].[2018]. http://www.shenghongpec.com/uploads/soft/181031/shhpqygsg.pdf. [15] 浙江石化. 浙江石油化工有限公司4000万吨/年炼化一体化项目环境影响报告书[EB/OL].[2016]. https://www.doc88.com/p-7847817252538.html. [16] 恒力石化. 恒力石化(大连)有限公司2000万吨/年炼化一体化项目环境影响报告书[EB/OL].[2015]. https://max.book118.com/html/2017/1005/135975131.shtm. [17] SADRAMELI S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:a state-of-the-art review:catalytic cracking review[J]. Fuel, 2016, 173:285-297. [18] OGURA M, SHINOMIYA S, TATENO J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Applied Catalysis A:General, 2001, 219(1/2):33-43. [19] SLAGTERN A, DAHL I M, JENS K J. et al. Cracking of cyclohexane by high Si HZSM-5[J]. Applied Catalysis A:General, 2010, 375(2):213-221. [20] ZHU X X, LIU S L, SONG Y Q, et al. Catalytic cracking of C4 alkenes to propene and ethene:influences of zeolites pore structures and Si/Al2 ratios[J]. Applied Catalysis A:General, 2005, 288(1/2):134-142. [21] SIDDIQUI M, AITANI A, SAEED M, et al. Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst[J]. Top. Catal., 2010, 53(19/20):1387-1393. [22] LI X F, SHEN B J, GUO Q X, et al. Effects of large pore zeolite additions in the catalytic pyrolysis catalyst on the light olefins production[J]. Catalysis Today, 2007, 125(3/4):270-277. [23] BLASCO T, CORMA A, MARTÍNEZ-TRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2):267-277. [24] JI Y J, YANG H H, ZHANG Q, et al. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane[J]. Journal of Solid State Chemistry, 2017, 251:7-13. [25] LV J, HUA Z L, GE T G, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous and Mesoporous Materials, 2017, 247:31-37. [26] DING J, WANG M, PENG L M, et al. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Applied Catalysis A:General, 2015, 503:147-155. [27] EPELDE E, SANTOSC J I, FLORIAN P, et al. Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification[J]. Applied Catalysis A:General, 2015, 505:105-115. [28] WAKUI K, SATOH K, SAWADA G, et al. Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts[J]. Catalysis Letter, 2002, 84(3/4):259-264. [29] YOSHIMURA Y, KIJIMA N, HAYAKAWA T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan, 2001, 4(2):157-167. [30] RANE N, KERSBULCK M, VAN SANTEN R A, et al. Cracking of n-heptane over Brønsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2008, 110(2/3):279-291. [31] 赵文斌, 朱丽云, 苏楷然, 等. 催化裂化反应器研究进展[J]. 石油化工设备, 2016, 45(5):34-39. ZHAO W B, ZHU L Y, SU K R, et al. Technical process in catalytic cracking reactor[J]. Petro-Chemical Equipment, 2016, 45(5):34-39. [32] CHENG Y, WU C N, ZHU J X, et al. Downer reactor:from fundamental study to industrial application[J]. Powder Technology, 2008, 183(3):364-384. [33] 钱伯章. 增产低碳烯烃的FCC工艺[J]. 石油炼制与化工, 2013, 44(10):86. QIAN B Z. FCC process for increasing production of low-carbon olefins[J]. Petroleum Processing and Petrochemicals, 2013, 44(10):86. [34] 张甫, 任颖, 杨明, 等. 劣质重油加氢技术的工业应用及发展趋势[J]. 现代化工, 2019, 39(6):15-20. ZHANG F, REN Y, YANG M, et al. Industrial application and trend of hydrogenation technology for inferior heavy oil[J]. Modern Chemical Industry, 2019, 39(6):15-20. [35] 辛靖, 高杨, 张海洪. 劣质重油沸腾床加氢技术现状与研究进展[J]. 无机盐工业, 2018, 50(6):6-12. XIN J, GAO Y, ZHANG H H. Application situation and new advances of ebullated bed hydrocracking technologies for low-grade heavy oil[J]. Inorganic Chemicals Industry, 2018, 50(6):6-12. [36] MARTINEZ J, SANCHEZ J L, ANCHEYTA J, et al. A review of process aspects and modeling of ebullated bed reactors for hydrocracking of heavy oils[J]. Catalysis Reviews, 2010, 52(1):60-105. [37] 吴青. 悬浮床加氢裂化-劣质重油直接深度高效转化技术[J]. 炼油技术与工程, 2014, 44(2):2-8. WU Q. Suspended-bed hydrocracking process-a deep high-efficiency conversion process in rapid development[J]. Petroleum Refinery Engineering, 2014, 44(2):2-8. [38] MANEK E, HAYDARY J. Hydrocracking of vacuum residue with solid and dispersed phase catalyst:modeling of sediment formation and hydrodesulfurization[J]. Fuel Processing Technology, 2017, 159:320-327. [39] 李传, 崔敏, 王继乾, 等. 表面活性剂对渣油沥青质体系分散性质的影响[J]. 应用化学, 2008, 25(1):85-89. LI C, CUI M, WANG J Q, et al. Effects of surfactants on dispersion characteristics of residue asphaltene[J]. Chinese Journal of Applied Chemistry, 2008, 25(1):85-89. [40] 王继乾. 添加物对渣油热反应生焦的影响及作用机理研究[D]. 青岛:中国石油大学, 2006. WANG J Q. Effect of additives on coke formation and its mechanism during residual thermal reaction[D]. Qingdao:China University of Petroleum, 2006. [41] 黄河, 刘娜, 王雪峰, 等. 悬浮床加氢技术进展[J]. 应用化工, 2019, 48(6):1401-1406. HUANG H, LIU N, WANG X F, et al. Advances of researches on slurry-bed hydrogenation[J]. Applied Chemical Industry, 2019, 48(6):1401-1406. |