[1] SRIVASTAVA G, PAUL A K, GOUD V V. Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition[J]. Energy Conversion and Management, 2018, 156:269-278. [2] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chemical Reviews, 2002, 102(8):2725-2750. [3] SATO T, MORI S, WATANABE M, et al. Upgrading of bitumen with formic acid in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1):232-240. [4] SATO T, TRUNG P H, TOMITA T, et al. Effect of water density and air pressure on partial oxidation of bitumen in supercritical water[J]. Fuel, 2012, 95:347-351. [5] MORIYA T, ENOMOTO H. Role of water in conversion of polyethylene to oils through supercritical water cracking[J]. Kagaku Kogaku Ronbunshu, 1999, 25(6):940-946. [6] CHENG Z M, DING Y, ZHAO L Q, et al. Effects of supercritical water in vacuum residue upgrading[J]. Energy & Fuels, 2009, 23(6):3178-3183. [7] BERKOWITZ N, DUNN S R. Method for extracting and upgrading of heavy and semi-heavy oils and bitumens:US7947165B2[P]. 2011-05-24. [8] GREGOLI A A, URIEL M O. Process for converting heavy crudes, tars and bitumens to lighter products in the presence of brine at supercritical conditions:US4818370A[P]. 1989-04-04. [9] HE Z Q, LI L, LI L X, et al. Process and reactor for upgrading heavy hydrocarbon oils:US20080099378A1[P]. 2008-05-01. [10] MORIMOTO M, SATO S, TAKANOHASHI T. Effect of water properties on the degradative extraction of asphaltene using supercritical water[J]. The Journal of Supercritical Fluids, 2012, 68:113-116. [11] VILCÁ EZ J, WATANABE M, WATANABE N, et al. Hydrothermal extractive upgrading of bitumen without coke formation[J]. Fuel, 2012, 102:379-385. [12] WATANABE M, KATO S N, ISHIZEKI S, et al. Heavy oil upgrading in the presence of high density water:basic study[J]. The Journal of Supercritical Fluids, 2010, 53(1/2/3):48-52. [13] ZHAO L Q, CHENG Z M, DING Y, et al. Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water[J]. Energy & Fuels, 2006, 20(5):2067-2071. [14] DUTTA R P, MCCAFFREY W C, GRAY M R, et al. Thermal cracking of Athabasca bitumen:influence of steam on reaction chemistry[J]. Energy & Fuels, 2000, 14(3):671-676. [15] SATO T, ADSCHIRI T, ARAI K, et al. Upgrading of asphalt with and without partial oxidation in supercritical water[J]. Fuel, 2003, 82(10):1231-1239. [16] SCHLEPP L, ELIE M, LANDAIS P, et al. Pyrolysis of asphalt in the presence and absence of water[J]. Fuel Processing Technology, 2001, 74(2):107-123. [17] KOZHEVNIKOV I, NUZHDIN A, MARTYANOV O. Transformation of petroleum asphaltenes in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1):217-222. [18] RAHMANI S, MCCAFFREY W, GRAY M R. Kinetics of solvent interactions with asphaltenes during coke formation[J]. Energy & Fuels, 2002, 16(1):148-154. [19] SATO M, GOTO M, HIROSE T. Supercritical fluid extraction on semibatch mode for the removal of terpene in citrus oil[J]. Industrial & Engineering Chemistry Research, 1996, 35(6):1906-1911. [20] DEPEYRE D, FLICOTEAUX C. Modeling of thermal steam cracking of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 1991, 30(6):1116-1130. [21] DEPEYRE D, FLICOTEAUX C, CHARDAIRE C. Pure n-hexadecane thermal steam cracking[J]. Ind. Eng. Chem. Process Des. Dev., 1985, 24(4):1251-1258. [22] KHORASHEH F, GRAY M R. High-pressure thermal cracking of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 1993, 32(9):1853-1863. [23] YUAN P Q, ZHU C C, LIU Y, et al. Solvation of hydrocarbon radicals in sub-CW and SCW:an ab initio MD study[J]. The Journal of Supercritical Fluids, 2011, 58(1):93-98. [24] LIU Y, BAI F, ZHU C C, et al. Upgrading of residual oil in sub-and supercritical water:an experimental study[J]. Fuel Processing Technology, 2013, 106:281-288. [25] SINGH J, KUMAR S, GARG M O. Kinetic modelling of thermal cracking of petroleum residues:a critique[J]. Fuel Processing Technology, 2012, 94(1):131-144. [26] LIU Q K, ZHU D Q, TAN X C, et al. Lumped reaction kinetic models for pyrolysis of heavy oil in the presence of supercritical water[J]. AIChE Journal, 2016, 62(1):207-216. [27] ZAFARANI M M T, SARMAD S. Measurement and correlation of phase equilibria for poly(ethylene glycol) methacrylate+alcohol systems at 298.15K[J]. Journal of Chemical & Engineering Data, 2005, 50(1):283-287. [28] VAN KONYNENBURG P, SCOTT R. Critical lines and phase equilibria in binary van der Waals mixtures[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1980, 298(1442):495-540. [29] BRUNNER E. Fluid mixtures at high pressures Ⅸ. Phase separation and critical phenomena in 23(n-alkane+water) mixtures[J]. The Journal of Chemical Thermodynamics, 1990, 22(4):335-353. [30] BRUNNER E, THIES M C, SCHNEIDER G M. Fluid mixtures at high pressures:phase behavior and critical phenomena for binary mixtures of water with aromatic hydrocarbons[J]. The Journal of Supercritical Fluids, 2006, 39(2):160-173. [31] STEVENSON R, LABRACIO D, BEATON T, et al. Fluid phase equilibria and critical phenomena for the dodecane-water and squalane-water systems at elevated temperatures and pressures[J]. Fluid Phase Equilibria, 1994, 93:317-336. [32] AMANI M J, GRAY M R, SHAW J M. Phase behavior of Athabasca bitumen+water mixtures at high temperature and pressure[J]. The Journal of Supercritical Fluids, 2013, 77:142-152. [33] BAI F, ZHU C C, LIU Y, et al. Co-pyrolysis of residual oil and polyethylene in sub-and supercritical water[J]. Fuel Processing Technology, 2013, 106:267-274. [34] LIU J, XING Y, CHEN Y X, et al. Visbreaking of heavy oil under supercritical water environment[J]. Industrial&Engineering Chemistry Research, 2018, 57(3):867-875. [35] TAN X C, LIU Q K, ZHU D Q, et al. Pyrolysis of heavy oil in the presence of supercritical water:the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3):857-866. |