Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4020-4028.DOI: 10.16085/j.issn.1000-6613.2019-0008
• Energy processes and technology • Previous Articles Next Articles
Shuai WANG1(),Jiaqiang JING1,2(),Xuehua SONG3,Xiaoyan SHEN3,Lu CHEN4
Received:
2019-01-02
Online:
2019-09-05
Published:
2019-09-05
Contact:
Jiaqiang JING
通讯作者:
敬加强
作者简介:
王帅(1991—),男,博士研究生,研究方向为油气多相流流动保障。E-mail:基金资助:
CLC Number:
Shuai WANG,Jiaqiang JING,Xuehua SONG,Xiaoyan SHEN,Lu CHEN. Yield characteristics of heavy oil emulsion and prediction for pipeline start-up pressure[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4020-4028.
王帅,敬加强,宋学华,沈晓燕,陈璐. 稠油乳状液屈服特性及环道启动压力预测[J]. 化工进展, 2019, 38(9): 4020-4028.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0008
温度/℃ | 稠度系数m/Pa·s n | 流变指数n |
---|---|---|
10 | 13.74 | 0.91 |
20 | 2.67 | 0.99 |
30 | 1.11 | 0.99 |
40 | 0.48 | 1.01 |
50 | 0.33 | 0.97 |
60 | 0.20 | 0.95 |
70 | 0.15 | 0.92 |
温度/℃ | 稠度系数m/Pa·s n | 流变指数n |
---|---|---|
10 | 13.74 | 0.91 |
20 | 2.67 | 0.99 |
30 | 1.11 | 0.99 |
40 | 0.48 | 1.01 |
50 | 0.33 | 0.97 |
60 | 0.20 | 0.95 |
70 | 0.15 | 0.92 |
20℃密度 /kg·m-3 | 50℃黏度/mPa·s | 凝点/℃ | SARA/% | |||
---|---|---|---|---|---|---|
饱和烃 | 芳香烃 | 胶质 | 沥青质 | |||
917.50 | 307.20 | -10.20 | 30.34 | 24.03 | 43.79 | 1.84 |
20℃密度 /kg·m-3 | 50℃黏度/mPa·s | 凝点/℃ | SARA/% | |||
---|---|---|---|---|---|---|
饱和烃 | 芳香烃 | 胶质 | 沥青质 | |||
917.50 | 307.20 | -10.20 | 30.34 | 24.03 | 43.79 | 1.84 |
离子类型 | 矿化度/mg·L-1 |
---|---|
K++Na+ | 1248.0 |
Mg2+ | 15.0 |
Ca2+ | 14.9 |
Cl- | 306.7 |
| 35.6 |
| 2582.0 |
| 135.7 |
总矿化度 | 4337.9 |
离子类型 | 矿化度/mg·L-1 |
---|---|
K++Na+ | 1248.0 |
Mg2+ | 15.0 |
Ca2+ | 14.9 |
Cl- | 306.7 |
| 35.6 |
| 2582.0 |
| 135.7 |
总矿化度 | 4337.9 |
恒定剪切速率/s-1 | 温度/℃ | 启动屈服应力/Pa | 平衡剪切应力/Pa |
---|---|---|---|
45 | 30 | 140 | 57.31 |
40 | 112 | 27.82 | |
75 | 30 | 230 | 95.81 |
40 | 186 | 45.94 | |
100 | 30 | 309 | 127.74 |
40 | 250 | 60.48 | |
110 | 30 | 341 | 140.44 |
40 | 274 | 66.32 | |
120 | 30 | 372 | 152.99 |
40 | 300 | 71.99 | |
130 | 30 | 402 | 165.52 |
40 | 324 | 77.87 | |
140 | 30 | 430 | 177.87 |
40 | 350 | 83.62 | |
150 | 30 | 462 | 190.39 |
40 | 379 | 89.48 |
恒定剪切速率/s-1 | 温度/℃ | 启动屈服应力/Pa | 平衡剪切应力/Pa |
---|---|---|---|
45 | 30 | 140 | 57.31 |
40 | 112 | 27.82 | |
75 | 30 | 230 | 95.81 |
40 | 186 | 45.94 | |
100 | 30 | 309 | 127.74 |
40 | 250 | 60.48 | |
110 | 30 | 341 | 140.44 |
40 | 274 | 66.32 | |
120 | 30 | 372 | 152.99 |
40 | 300 | 71.99 | |
130 | 30 | 402 | 165.52 |
40 | 324 | 77.87 | |
140 | 30 | 430 | 177.87 |
40 | 350 | 83.62 | |
150 | 30 | 462 | 190.39 |
40 | 379 | 89.48 |
恒定剪切速率/s-1 | 温度/℃ | 启动屈服应力/Pa | 平衡剪切应力/Pa |
---|---|---|---|
160 | 30 | 492 | 202.12 |
40 | 402 | 94.31 | |
180 | 30 | 557 | 230.55 |
40 | 449 | 105.85 | |
200 | 30 | 619 | 255.22 |
40 | 505 | 119.20 | |
250 | 30 | 765 | 318.55 |
40 | 633 | 145.98 | |
300 | 30 | 930 | 379.28 |
40 | 752 | 176.78 |
恒定剪切速率/s-1 | 温度/℃ | 启动屈服应力/Pa | 平衡剪切应力/Pa |
---|---|---|---|
160 | 30 | 492 | 202.12 |
40 | 402 | 94.31 | |
180 | 30 | 557 | 230.55 |
40 | 449 | 105.85 | |
200 | 30 | 619 | 255.22 |
40 | 505 | 119.20 | |
250 | 30 | 765 | 318.55 |
40 | 633 | 145.98 | |
300 | 30 | 930 | 379.28 |
40 | 752 | 176.78 |
温度 /℃ | 流量/L·min-1 | 实测?P 1~6 /kPa | 预测启动压力?P 1~6/kPa | |||
---|---|---|---|---|---|---|
按τ y | δ ? P /% | 按τ ∞ | δ ? P /% | |||
30 | 3.61 | 81.52 | 198.36 | 143.32 | 81.76 | 0.30 |
6.56 | 143.08 | 359.68 | 151.38 | 148.36 | 3.69 | |
9.04 | 195.42 | 495.08 | 153.34 | 204.28 | 4.53 | |
11.73 | 288.6 | 641.80 | 122.38 | 264.89 | 8.21 | |
40 | 3.83 | 44.26 | 168.36 | 280.38 | 42.19 | 4.67 |
7.39 | 82.00 | 326.64 | 298.35 | 79.73 | 2.77 | |
10.69 | 118.41 | 473.97 | 300.28 | 113.99 | 3.73 | |
13.98 | 160.88 | 621.25 | 286.15 | 147.81 | 8.12 |
温度 /℃ | 流量/L·min-1 | 实测?P 1~6 /kPa | 预测启动压力?P 1~6/kPa | |||
---|---|---|---|---|---|---|
按τ y | δ ? P /% | 按τ ∞ | δ ? P /% | |||
30 | 3.61 | 81.52 | 198.36 | 143.32 | 81.76 | 0.30 |
6.56 | 143.08 | 359.68 | 151.38 | 148.36 | 3.69 | |
9.04 | 195.42 | 495.08 | 153.34 | 204.28 | 4.53 | |
11.73 | 288.6 | 641.80 | 122.38 | 264.89 | 8.21 | |
40 | 3.83 | 44.26 | 168.36 | 280.38 | 42.19 | 4.67 |
7.39 | 82.00 | 326.64 | 298.35 | 79.73 | 2.77 | |
10.69 | 118.41 | 473.97 | 300.28 | 113.99 | 3.73 | |
13.98 | 160.88 | 621.25 | 286.15 | 147.81 | 8.12 |
1 | MARTÍNEZ-PALOU R , MOSQUEIRA M , ZAPATA-RENDÓN B , et al . Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75(3/4): 274-282. |
2 | International Energy Agency . Oil market report[R]. Paris: IEA, 2018. |
3 | 万宇飞, 邓道明, 刘霞, 等 . 稠油掺稀管道输送工艺特性[J]. 化工进展, 2014, 33(9): 2293-2297. |
WAN Y F , DENG D M , LIU X , et al . Thermo-hydraulic features of a diluted heavy crude pipeline[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2293-2297. | |
4 | SUN H , LEI X X , SHEN B X , et al . Rheological properties and viscosity reduction of South China Sea crude oil[J]. Journal of Energy Chemistry, 2018, 27(4): 1198-1207. |
5 | SUN J , JING J Q , WU C , et al . Pipeline transport of heavy crudes as stable foamy oil[J]. Journal of Industrial and Engineering Chemistry, 2016, 44: 126-135. |
6 | GHANNAM M T , HASAN S W , ABU-JDAYIL B . Rheological properties of heavy & light crude oil mixtures for improving flowability[J]. Journal of Petroleum Science and Engineering, 2012, 81: 122-128. |
7 | HASAN S W , GHANNAM M T , ESMAIL N . Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel, 2010, 89(5): 1095-1100. |
8 | 敬加强, 孙杰, 赵红艳, 等 . 稠油流动边界层水基泡沫减阻模拟[J]. 化工学报, 2014, 65(11): 4301-4308. |
JING J Q , SUN J , ZHAO H Y , et al . Simulation of drag reduction of aqueous foam on heavy oil flow boundary layer[J]. CIESC Journal, 2014, 65(11): 4301-4308. | |
9 | 刘增哲, 王立献, 陶志刚, 等 . 渤中稠油乳状液稳定性及脱水试验研究[J]. 石油与天然气, 2014, 32(2): 32-35. |
LIU Z Z , WANG L X , TAO Z G , et al . Study on stability and dehydration test of Bozhong heavy oil emulsion[J]. Natural Gas and Oil, 2014, 32(2): 32-35. | |
10 | UHDE A , KOPP G . Pipeline problems resulting from handling of waxy crude[J]. Journal of the Institute of Petroleum, 1971, 57(554):63-73. |
11 | HOUSKA M . Engineering aspects of the rheology of thixotropic liquids[D]. Prague: Czech Technical University of Prague, 1981. |
12 | CHANG C , BOGER D V , NGUYEN Q D . The yielding of waxy crude oils[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1551-1559. |
13 | CHANG C , NGUYEN Q D , RØNNINGSEN H P . Isothermal start-up of pipeline transporting waxy crude oil[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 87(2/3): 127-154. |
14 | 刘天佑, 高艳清, 曹强, 等 . 原油长输管道启动压力研究[J]. 油气储运, 1997, 16(12): 7-13. |
LIU T Y , GAO Y Q , CAO Q , et al . Study on the start-up pressure of long-distance crude oil pipeline[J]. Oil & Gas Storage and Transportation, 1997, 16(12): 7-13. | |
15 | 滕厚兴, 张劲军 . 含蜡原油的黏弹-触变模型[J]. 化工学报, 2013, 64(11): 3968-3975. |
TENG H X , ZHANG J J . Viscoelasto-thixotropic model for waxy crude[J]. CIESC Journal, 2013, 64(11): 3968-3975. | |
16 | LI H Y , ZHANG J J , SONG C F , et al . The influence of the heating temperature on the yield stress and pour point of waxy crude oils[J]. Journal of Petroleum Science and Engineering, 2015, 135: 476-483. |
17 | GUO L P , ZHANG J J , SUN G Y , et al . Thixotropy and its estimation of water-in-waxy crude emulsion gels[J]. Journal of Petroleum Science and Engineering, 2015, 131: 86-95. |
18 | SUN G Y , ZHANG J J , MA C B, et al . Start-up flow behavior of pipelines transporting waxy crude oil emulsion[J]. Journal of Petroleum Science and Engineering, 2016, 147: 746-755. |
19 | BAO Y Q , ZHANG J J , WANG X Y , et al . Applicability of quasi-steady assumption during the numerical simulation of the start-up of weakly compressible Herschel-Bulkley fluids in pipelines[J]. Journal of Petroleum Science and Engineering, 2018, 167: 202-215. |
20 | 张国忠, 刘刚 . 大庆胶凝原油启动屈服应力研究[J]. 中国石油大学学报(自然科学版), 2005, 29(6): 91-93. |
ZHANG G Z , LIU G . Investigation on start-up yield stress of Daqing gelled crude oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2005, 29(6): 91-93. | |
21 | 兰浩, 张国忠, 刘刚, 等 . 恒剪速下胶凝原油初始结构破坏过程力学特性[J]. 中国石油大学学报(自然科学版), 2009, 33(2): 117-121. |
LAN H , ZHANG G Z , LIU G , et al . Mechanical behaviour of gelled crude oil under constant shear rate in initial structural failure process[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(2): 117-121. | |
22 | ZHANG G Z , XIAO W T , LIU G , et al . The initial startup wave velocity in isothermal pipeline with compressible gelled crude oil[J]. SPE Journal, 2014, 19(3): 418-424. |
23 | LIU G , CHEN L , ZHANG G Z , et al . Experimental study on the compressibility of gelled crude oil[J]. SPE Journal, 2015, 20(2): 248-254. |
24 | CHEN L , LIU G , ZHANG G Z , et al . Transient stage comparison of Couette flow under step shear stress and step velocity boundary conditions[J]. International Communications in Heat and Mass Transfer, 2016, 75: 232-239. |
25 | 郝迎鹏, 张国忠, 刘刚 . 胶凝原油管道再启动相关问题研究现状[J]. 油气储运, 2013, 32(7): 685-691. |
HAO Y P , ZHANG G Z , LIU G . Current research on restart of a gelled crude oil pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(7): 685-691. | |
26 | ZHANG J , XU J Y , GAO M C . Experimental investigation on yield stress of water-in-heavy crude oil emulsions in order to improve pipeline flow[J]. Journal of Dispersion Science and Technology, 2014, 35(4): 593-598. |
27 | ZHANG J , CHEN X P , ZHANG D , et al . Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Suizhong oilfield in China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 563-574. |
28 | ZHANG J , XU J Y . Rheological behaviour of oil and water emulsions and their flow characterization in horizontal pipes[J]. The Canadian Journal of Chemical Engineering, 2016, 94(2): 324-331. |
29 | 张健, 许晶禹 . 超稠原油-水分散体系的黏弹性特征[M]//吴有生, 邵雪明, 胡兴军. 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集, 北京: 海洋出版社, 2017: 650-655. |
ZHANG J , XU J Y . Investigation on the visco-elastic characteristics of heavy crude oil-water emulsions[M]//WU Y S, SHAO X M, HU X J. Proceedings of the 14th National Congress on Hydrodynamics & the 28th National Conference on Hydrodynamics, Beijing: China Ocean Press, 2017: 650-655. | |
30 | OLIVEIRA G M , ROCHA L L , FRANCO A T , et al . Numerical simulation of the start-up of Bingham fluid flows in pipelines[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165: 1114-1128. |
31 | SIERRA A G , VARGES P R , RIBEIRO S S . Startup flow of elasto-viscoplastic thixotropic materials in pipes[J]. Journal of Petroleum Science and Engineering, 2016, 147: 427-434. |
32 | WEI L X , LEI Q M , ZHAO J , et al . Numerical simulation for the heat transfer behavior of oil pipeline during the shutdown and restart process[J]. Case Studies in Thermal Engineering, 2018, 12: 470-483. |
[1] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[2] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[3] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[4] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[5] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[6] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[7] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[8] | LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571. |
[9] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[10] | ZHANG Jianwei, XU Rui, ZHANG Zhongchuang, DONG Xin, FENG Ying. Mixing characteristics of concentration field in impingement flow reactor based on convolutional neural network [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 658-668. |
[11] | ZHU Qichen, WU Zhangyong, WANG Zhiqiang, JIANG Jiajun, LI Xiang. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. |
[12] | LI Lu, BAO Sui, ZHANG Liming, WANG Ran, TAO Zhenghong, YANG Xingxiang. Preparation and characterization of carrageenan-konjac gum hybrid gel for encapsulating fragrance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 376-381. |
[13] | LI Wei, RUAN Chenglong, WANG Xiaoming, LI Yajie, LIANG Chenglong. Integrated modelling method for tank-batch finished gasoline blending formulations [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4701-4712. |
[14] | FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253. |
[15] | YANG Lei, SONG Jinling, TANG Chuyang, YU Shiyao, YANG Xinyu. Products prediction of carbon-based solid waste pyrolysis based on FUSION model [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3966-3973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |