Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3804-3815.DOI: 10.16085/j.issn.1000-6613.2024-0827
• Energy processes and technology • Previous Articles
WANG Shuai1(
), QIAN Xiangchen1(
), ZHANG Leiqi2, WU Qiliang2, LIU Min2
Received:2024-05-20
Revised:2024-06-26
Online:2025-08-04
Published:2025-07-25
Contact:
QIAN Xiangchen
王帅1(
), 钱相臣1(
), 章雷其2, 吴启亮2, 刘敏2
通讯作者:
钱相臣
作者简介:王帅(2000—),男,硕士研究生,研究方向为燃料电池故障诊断技术。E-mail:120222227070@ncepu.edu.cn。
基金资助:CLC Number:
WANG Shuai, QIAN Xiangchen, ZHANG Leiqi, WU Qiliang, LIU Min. Degradation mechanism of key components in proton exchange membrane fuel cells and proton exchange membrane electrolysis cells[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3804-3815.
王帅, 钱相臣, 章雷其, 吴启亮, 刘敏. 质子交换膜燃料电池和电解槽关键组件衰减机理[J]. 化工进展, 2025, 44(7): 3804-3815.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0827
| PEM衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | ① 自由基攻击。H2O2作为气体交叉或氧还原反应的副产物[ ②金属阳离子毒化。金属阳离子一般通过扩散和渗透溶解到膜中,占据膜的离子交换位点,造成更高的欧姆损耗,该过程部分可逆[ |
| 机械衰减 | 蠕变、穿孔、撕裂。制备过程出现缺陷、装配不当或机械应力等,外侧支撑的BPP流道和筋部产生不均匀应力,内部含水量变化;MEA夹在BPP间可能受力不均,PTL表面粗糙 |
| 热衰减 | 主要是高温条件。燃料电池内部出现气体饥饿或较为严重的气体渗透现象导致膜上出现局部高温[ |
| PEM衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | ① 自由基攻击。H2O2作为气体交叉或氧还原反应的副产物[ ②金属阳离子毒化。金属阳离子一般通过扩散和渗透溶解到膜中,占据膜的离子交换位点,造成更高的欧姆损耗,该过程部分可逆[ |
| 机械衰减 | 蠕变、穿孔、撕裂。制备过程出现缺陷、装配不当或机械应力等,外侧支撑的BPP流道和筋部产生不均匀应力,内部含水量变化;MEA夹在BPP间可能受力不均,PTL表面粗糙 |
| 热衰减 | 主要是高温条件。燃料电池内部出现气体饥饿或较为严重的气体渗透现象导致膜上出现局部高温[ |
| CL衰减(化学衰减) | 详细衰减机理 |
|---|---|
PEMFC和PEMEC阴极 (Pt/C) | ① 催化剂损失。Ostwald熟化、再沉积和聚结过程单独或同时发生,纳米Pt颗粒迁移、分解、溶解后沉积在大颗粒表面或少量溶入水中,以离子形式流出反应场所或再沉积在其他组件上,使ECSA减小[ ② 载体损失。高电位碳腐蚀速率显著提高[ ③ 离聚物损失。自由基攻击和金属阳离子毒化,机理与PEM类似 |
PEMEC阳极 (Ir基材料) | ① 催化剂损失。IrO2催化反应机理复杂,中间产物较多,可能发生溶解,同时高电位加速这一过程[ ② 载体损失。TiO2易钝化,接触电阻增加;膜化学衰减产生的氟化物会使载体腐蚀 |
| CL衰减(化学衰减) | 详细衰减机理 |
|---|---|
PEMFC和PEMEC阴极 (Pt/C) | ① 催化剂损失。Ostwald熟化、再沉积和聚结过程单独或同时发生,纳米Pt颗粒迁移、分解、溶解后沉积在大颗粒表面或少量溶入水中,以离子形式流出反应场所或再沉积在其他组件上,使ECSA减小[ ② 载体损失。高电位碳腐蚀速率显著提高[ ③ 离聚物损失。自由基攻击和金属阳离子毒化,机理与PEM类似 |
PEMEC阳极 (Ir基材料) | ① 催化剂损失。IrO2催化反应机理复杂,中间产物较多,可能发生溶解,同时高电位加速这一过程[ ② 载体损失。TiO2易钝化,接触电阻增加;膜化学衰减产生的氟化物会使载体腐蚀 |
| GDL和PTL衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | |
| PEMFC | ① 碳损失。腐蚀机理与CL中的类似。高电位时,阴极的碳可能被氧化成羧酸或酚,表面变得亲水[ |
| PEMFC | ② 腐蚀和钝化。阳极过电位、pH和电解槽温度等因素都会导致钛形成钝化钛(TiO x )薄膜[ |
| 机械衰减 | |
| PEMFC | ① 与制备工艺相关。不当的夹紧压缩[ |
| PEMFC | ② 不当压力。阴极生成氢气压力过高可能导致PTL机械强度下降甚至断裂,最终电解槽失效 |
| GDL和PTL衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | |
| PEMFC | ① 碳损失。腐蚀机理与CL中的类似。高电位时,阴极的碳可能被氧化成羧酸或酚,表面变得亲水[ |
| PEMFC | ② 腐蚀和钝化。阳极过电位、pH和电解槽温度等因素都会导致钛形成钝化钛(TiO x )薄膜[ |
| 机械衰减 | |
| PEMFC | ① 与制备工艺相关。不当的夹紧压缩[ |
| PEMFC | ② 不当压力。阴极生成氢气压力过高可能导致PTL机械强度下降甚至断裂,最终电解槽失效 |
| BPP衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | ① 腐蚀。SS在酸性和潮湿环境中容易腐蚀,主要通过缝隙腐蚀和点蚀传播[ |
| ② 钝化。生成的金属氧化物层增加接触电阻,降低导电性,使其转化热能增加,效率降低,性能衰减。SS相较于Ti更容易钝化[ | |
| ③ 氢脆。吸收过量氢气后形成裂纹,并在应力作用下扩展,最后突然脆性断裂[ |
| BPP衰减类型 | 详细衰减机理 |
|---|---|
| 化学衰减 | ① 腐蚀。SS在酸性和潮湿环境中容易腐蚀,主要通过缝隙腐蚀和点蚀传播[ |
| ② 钝化。生成的金属氧化物层增加接触电阻,降低导电性,使其转化热能增加,效率降低,性能衰减。SS相较于Ti更容易钝化[ | |
| ③ 氢脆。吸收过量氢气后形成裂纹,并在应力作用下扩展,最后突然脆性断裂[ |
| [1] | 刘敏, 张雪松, 赵红霞, 等. 氢电耦合系统安全风险研究[J]. 浙江电力, 2023, 42(5): 34-41. |
| LIU Min, ZHANG Xuesong, ZHAO Hongxia, et al. Study on the safety risk of a hydrogen-electric coupling system[J]. Zhejiang Electric Power, 2023, 42(5): 34-41. | |
| [2] | YUE Meiling, LAMBERT Hugo, PAHON Elodie, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
| [3] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. |
| ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. | |
| [4] | 叶清泉, 林厚飞, 金建新, 等. 考虑经济性和灵活性的海岛微电网优化调度策略[J]. 浙江电力, 2022, 41(3): 54-64. |
| YE Qingquan, LIN Houfei, JIN Jianxin, et al. An optimal dispatching strategy of island microgrid considering economy and flexibility[J]. Zhejiang Electric Power, 2022, 41(3): 54-64. | |
| [5] | 霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2): 197-203. |
| HUO Xianxu, WANG Jing, JIANG Ling, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. | |
| [6] | 曾一鸣, 马瑜涵, 吴启亮. 电氢耦合典型应用场景分析及经济性评估[J]. 浙江电力, 2023, 42(9): 1-8. |
| ZENG Yiming, MA Yuhan, WU Qiliang. Application analysis and economic evaluation of typical electricity-hydrogen coupling scenarios[J]. Zhejiang Electric Power, 2023, 42(9): 1-8. | |
| [7] | 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681. |
| WANG Shibo, KONG Lingguo, CAI Guowei, et al. Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681. | |
| [8] | 吴启亮, 章雷其, 赵波. 可再生能源制氢建模技术研究[J]. 浙江电力, 2023, 42(5): 18-33. |
| WU Qiliang, ZHANG Leiqi, ZHAO Bo. A study of the modeling technology of hydrogen production from renewable energy sources[J]. Zhejiang Electric Power, 2023, 42(5): 18-33. | |
| [9] | 叶好, 韩丁波, 张剑波, 等. 车用燃料电池质子交换膜研究进展[J]. 时代汽车, 2024(6): 126-128. |
| YE Hao, HAN Dingbo, ZHANG Jianbo, et al. Advances in proton exchange membrane research for automotive fuel cells[J]. Auto Time, 2024(6): 126-128. | |
| [10] | TANG Qianwen, LI Bing, YANG Daijun, et al. Review of hydrogen crossover through the polymer electrolyte membrane[J]. International Journal of Hydrogen Energy, 2021, 46(42): 22040-22061. |
| [11] | AHMAD Shahbaz, NAWAZ Tahir, Asghar ALI, et al. An overview of proton exchange membranes for fuel cells: Materials and manufacturing[J]. International Journal of Hydrogen Energy, 2022, 47(44): 19086-19131. |
| [12] | HICKNER Michael A, GHASSEMI Hossein, KIM Yu Seung, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611. |
| [13] | EHLINGER Victoria M, CROTHERS Andrew R, KUSOGLU Ahmet, et al. Modeling proton-exchange-membrane fuel cell performance/degradation tradeoffs with chemical scavengers[J]. Journal of Physics: Energy, 2020, 2(4): 044006. |
| [14] | 程宇婷, 唐浩林, 潘牧. 全氟质子交换膜的化学降解及其稳定化研究进展[J]. 材料导报, 2011, 25(21): 29-33, 42. |
| CHENG Yuting, TANG Haolin, PAN Mu. Progress of chemical degradation and stabilization of perfluocarbon proton exchange membrane[J]. Materials Reports, 2011, 25(21): 29-33, 42. | |
| [15] | OKONKWO Paul C, BELGACEM Ikram Ben, EMORI Wilfred, et al. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27956-27973. |
| [16] | Hyoung Jun LIM, KIM Geonwoo, YUN Gun Jin. Durability and performance analysis of polymer electrolyte membranes for hydrogen fuel cells by a coupled chemo-mechanical constitutive model and experimental validation[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24257-24270. |
| [17] | CHANDESRIS M, MÉDEAU V, GUILLET N, et al. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353-1366. |
| [18] | CHANDESRIS M, VINCENT R, GUETAZ L, et al. Membrane degradation in PEM fuel cells: From experimental results to semi-empirical degradation laws[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8139-8149. |
| [19] | 王燕康, 谈金祝. 在模拟PEM燃料电池环境下质子交换膜化学损伤研究[J]. 太阳能学报, 2021, 42(9): 434-438. |
| WANG Yankang, TAN Jinzhu. Study on chemical degradation of proton exchange membrane in simulated PEM fuel cell environments[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 434-438. | |
| [20] | FENG Qi, YUAN Xiaozi, LIU Gaoyang, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55. |
| [21] | CARMO Marcelo, FRITZ David L, Jürgen MERGEL, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
| [22] | SUN Shucheng, SHAO Zhigang, YU Hongmei, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520. |
| [23] | SHRIVASTAVA Naveen K, CHATTERJEE Abheek, HARRIS Tequila A L. Manufacturing defects in slot die coated polymer electrolyte membrane for fuel cell application[J]. Chemical Engineering Science, 2023, 280: 119051. |
| [24] | 季文姣. 质子交换膜燃料电池中膜电极衰减机理综述[J]. 装备机械, 2019(1): 1-4, 13. |
| JI Wenjiao. Overview of attenuation mechanism of MEA in PEMFC[J]. The Magazine on Equipment Machinery, 2019(1): 1-4, 13. | |
| [25] | 王家军, 耿江涛, 邵志刚, 等. 氢燃料电池电堆寿命影响因素及机理分析[J]. 电源技术, 2023, 47(5): 551-557. |
| WANG Jiajun, GENG Jiangtao, SHAO Zhigang, et al. Influence factors and mechanisms of lifetime in hydrogen fuel cell stack[J]. Chinese Journal of Power Sources, 2023, 47(5): 551-557. | |
| [26] | 宋洁, 邓占锋, 徐桂芝, 等. 煤炭制氢替代技术———质子交换膜水电解制氢技术及其衰减机理[J]. 煤炭科学技术, 2022, 50(6): 136-144. |
| SONG Jie, DENG Zhanfeng, XU Guizhi, et al. Substitution technology for hydrogen production from coal—Proton exchange membrane water electrolysis technology for hydrogen production and its attenuation mechanism[J]. Coal Science and Technology, 2022, 50(6): 136-144. | |
| [27] | 陈骞, 周竞, 陆翌, 等. 一种适用于燃料电池-超级电容发电系统的控制策略[J]. 浙江电力, 2021, 40(1): 116-122. |
| CHEN Qian, ZHOU Jing, LU Yi, et al. A control strategy for fuel cell-ultracapacitor power generation system[J]. Zhejiang Electric Power, 2021, 40(1): 116-122. | |
| [28] | WANG Qianqian, LI Bing, YANG Daijun, et al. Research progress of heat transfer inside proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 492: 229613. |
| [29] | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略———第一部分: 关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
| WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
| [30] | CORTI Horacio R. Polymer electrolytes for low and high temperature PEM electrolyzers[J]. Current Opinion in Electrochemistry, 2022, 36: 101109. |
| [31] | 万年坊. 质子交换膜水电解制氢膜电极研究进展[J]. 化工进展, 2022, 41(12): 6385-6394. |
| WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394. | |
| [32] | LIU Chang, SHVIRO Meital, BENDER Guido, et al. Degradation effects at the porous transport layer/catalyst layer interface in polymer electrolyte membrane water electrolyzer[J]. Journal of the Electrochemical Society, 2023, 170(3): 034508. |
| [33] | MA Lirong, SUI Sheng, ZHAI Yuchun. Investigations on high performance proton exchange membrane water electrolyzer[J]. International Journal of Hydrogen Energy, 2009, 34(2): 678-684. |
| [34] | FU Cehuang, Thomas O’CARROLL, SHEN Shuiyun, et al. Metallic-Ir-based anode catalysts in PEM water electrolyzers: Achievements, challenges, and perspectives[J]. Current Opinion in Electrochemistry, 2023, 38: 101227. |
| [35] | HE Wei, TANG Fumin, LI Xiang, et al. Quantification and evolution on degradation mechanisms of proton exchange membrane fuel cell catalyst layer under dynamic testing conditions[J]. International Journal of Hydrogen Energy, 2023, 48(47): 18032-18040. |
| [36] | OKONKWO Paul C, Oladeji O IGE, BARHOUMI El Manaa, et al. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15850-15865. |
| [37] | SCHMITTINGER Wolfgang, VAHIDI Ardalan. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1): 1-14. |
| [38] | 陈宏, 鲁亮, 董江波, 等. 10 kW质子交换膜燃料电池电堆模拟工况下耐久性测试及衰减机理研究[J]. 中国科学: 化学, 2023, 53(9): 1792-1800. |
| CHEN Hong, LU Liang, DONG Jiangbo, et al. Investigation of the performance degradation and mechanism for a 10kW PEM fuel cell stack[J]. Scientia Sinica (Chimica), 2023, 53(9): 1792-1800. | |
| [39] | SAHEBDELFAR Saeed, RAVANCHI Maryam Takht. Carbon monoxide clean-up of the reformate gas for PEM fuel cell applications: A conceptual review[J]. International Journal of Hydrogen Energy, 2023, 48(64): 24709-24729. |
| [40] | CHEREVKO Serhiy, GEIGER Simon, KASIAN Olga, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 2.-Electrochemically grown hydrous iridium oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110. |
| [41] | BURCH M J, LEWINSKI K A, BUCKETT M I, et al. A novel work-flow to study Ir electrode thinning and dissolution in proton exchange membrane water electrolyzers[J]. Journal of Power Sources, 2021, 500: 229978. |
| [42] | 李微微, 谢晓峰, 王树博. 固体聚合物电解水制氢性能衰减分析[J]. 化工进展, 2020, 39(S2): 168-174. |
| LI Weiwei, XIE Xiaofeng, WANG Shubo. Performance degradation analysis of solid polymer electrolyte water electrolysis[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 168-174. | |
| [43] | Primož JOVANOVIČ, HODNIK Nejc, Francisco RUIZ-ZEPEDA, et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: Transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study[J]. Journal of the American Chemical Society, 2017, 139(36): 12837-12846. |
| [44] | LIU Xin, CHEN Jian, LIU Gang, et al. Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts[J]. Journal of Power Sources, 2010, 195(13): 4098-4103. |
| [45] | VAN PHAM Chuyen, Melanie BÜHLER, Julius KNÖPPEL, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: 118762. |
| [46] | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
| WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
| [47] | 张贵辰, 张杨, 周京华. 不同电气特性下的PEMFC寿命衰减机理研究综述[J]. 电源技术, 2023, 47(4): 434-438. |
| ZHANG Guichen, ZHANG Yang, ZHOU Jinghua. Review on life decay mechanism of PEMFC under different electrical characteristics[J]. Chinese Journal of Power Sources, 2023, 47(4): 434-438. | |
| [48] | BERBER Mohamed R, IMRAN Muhammad, NISHINO Hanako, et al. Suppression of membrane degradation accompanied with increased output performance in fuel cells by use of silica-containing anode catalyst layers[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13219-13227. |
| [49] | 曹婷婷, 崔新然, 马千里, 等. 质子交换膜燃料电池气体扩散层研究进展[J]. 汽车文摘, 2021(3): 8-14. |
| CAO Tingting, CUI Xinran, MA Qianli, et al. Research progress of gas diffusion layer in proton exchange membrane fuel cells[J]. Automotive Digest, 2021(3): 8-14. | |
| [50] | ATHANASAKI Grigoria, JAYAKUMAR Arunkumar, KANNAN A M. Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing—A review[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2294-2313. |
| [51] | 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427. |
| MA Xiaofeng, ZHANG Shuhan, HE Yong, et al. Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 420-427. | |
| [52] | 徐滨, 王锐, 苏伟, 等. 质子交换膜电解水技术关键材料的研究进展与展望[J]. 储能科学与技术, 2022, 11(11): 3510-3520. |
| XU Bin, WANG Rui, SU Wei, et al. Research progress and prospect of key materials of proton exchange membrane water electrolysis[J]. Energy Storage Science and Technology, 2022, 11(11): 3510-3520. | |
| [53] | PRESTAT Michel. Corrosion of structural components of proton exchange membrane water electrolyzer anodes: A review[J]. Journal of Power Sources, 2023, 556: 232469. |
| [54] | BORUP Rod, MEYERS Jeremy, PIVOVAR Bryan, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951. |
| [55] | WANG Yulin, XU Haokai, HE Wei, et al. Lattice Boltzmann simulation of the structural degradation of a gas diffusion layer for a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2023, 556: 232452. |
| [56] | YU Shuchun, LI Xiaojin, LI Jin, et al. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2013, 76: 301-306. |
| [57] | XU Keyi, DI Qian, SUN Fengman, et al. Degradation mechanism analysis of substrate and microporous layer of gas diffusion layer in proton exchange membrane fuel cell[J]. Fuel, 2024, 358: 130198. |
| [58] | CHEN Tao, LIU Shihua, ZHANG Jiwei, et al. Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1168-1174. |
| [59] | DOAN Tuan Linh, LEE Han Eol, KIM MinJoong, et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis[J]. Journal of Power Sources, 2022, 533: 231370. |
| [60] | TAN Aidong, ZHANG Yipeng, SHI Xiaoyun, et al. The poisoning effects of Ti-ion from porous transport layers on the membrane electrode assembly of proton exchange membrane water electrolyzers[J]. Chemical Engineering Journal, 2023, 471: 144624. |
| [61] | CHEN Yanqin, ZHAO Jinghui, JIN Cuihong, et al. Effect of clamping compression on the mechanical performance of a carbon paper gas diffusion layer in polymer electrolyte membrane fuel cells[J]. Membranes, 2022, 12(7): 645. |
| [62] | LAPICQUE Francois, BELHADJ Mariem, BONNET Caroline, et al. A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability[J]. Journal of Power Sources, 2016, 336: 40-53. |
| [63] | BORGARDT Elena, PANCHENKO Olha, HACKEMÜLLER Franz Josef, et al. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis[J]. Journal of Power Sources, 2018, 374: 84-91. |
| [64] | BOHACKOVA Tereza, LUDVIK Jakub, KOURIL Milan. Metallic material selection and prospective surface treatments for proton exchange membrane fuel cell bipolar plates—A review[J]. Materials, 2021, 14(10): 2682. |
| [65] | MATHEW Cijo, NAINA MOHAMED Samsudeen, DEVANATHAN Lenin Singaravelu. A comprehensive review of current research on various materials used for developing composite bipolar plates in polymer electrolyte membrane fuel cells[J]. Polymer Composites, 2022, 43(7): 4100-4114. |
| [66] | 周志凌, 胡砚强, 赖富明. PEMFC不锈钢双极板防腐涂层研究综述[J]. 广州化工, 2023, 51(3): 36-39. |
| ZHOU Zhiling, HU Yanqiang, LAI Fuming. Review on anticorrosive coatings for stainless steel bipolar plates of PEMFC[J]. Guangzhou Chemical Industry, 2023, 51(3): 36-39. | |
| [67] | FIEDLER Lena, MA Tien-Ching, FRITSCH Birk, et al. Stability of bipolar plate materials for proton-exchange membrane water electrolyzers: Dissolution of titanium and stainless steel in DI water and highly diluted acid[J]. ChemElectroChem, 2023, 10(20): e202300373. |
| [68] | 王建刚, 沈文晶, 张欣. 质子交换膜燃料电池双极板的研究进展[J]. 河北冶金, 2023(9): 6-10. |
| WANG Jiangang, SHEN Wenjing, ZHANG Xin. Research progress of proton exchange membrane fuel cell bipolar plates[J]. Hebei Metallurgy, 2023(9): 6-10. | |
| [69] | LIU Gaoyang, HOU Faguo, PENG Shanlong, et al. Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(5): 1099-1119. |
| [70] | PUGAL MANI S, SRINIVASAN A, RAJENDRAN N. Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for proton exchange membrane fuel cell (PEMFC)[J]. International Journal of Hydrogen Energy, 2015, 40(8): 3359-3369. |
| [71] | FAN Hongqiang, WU Yuanmin, SU Shuo, et al. Solution acidity and temperature induced anodic dissolution and degradation of through-plane electrical conductivity of Au/TiN coated metal bipolar plates used in PEMFC[J]. Energy, 2022, 254: 124453. |
| [72] | CHENG Hongxu, LUO Hong, WANG Xuefei, et al. Effect of fluoride ion concentration and fluctuating conditions on titanium bipolar plate in PEM water electrolyser environment[J]. Corrosion Science, 2023, 222: 111414. |
| [73] | STIBER S, SATA N, MORAWIETZ T, et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components[J]. Energy & Environmental Science, 2022, 15(1): 109-122. |
| [74] | LI Wei, LIU Lintao, LI Zhengxian, et al. Corrosion resistance and conductivity of amorphous carbon coated SS316L and TA2 bipolar plates in proton-exchange membrane fuel cells[J]. Diamond and Related Materials, 2021, 118: 108503. |
| [75] | 李星国. 金属的氢脆及其产生机制[J]. 上海金属, 2023, 45(5): 1-16. |
| LI Xingguo. Hydrogen embrittlement of metals and its mechanism[J]. Shanghai Metals, 2023, 45(5): 1-16. | |
| [76] | 史言, 胡晓宏, 周元全. PEM水电解器中阴极钛集电器、双极板的氢脆防护[J]. 航天医学与医学工程, 2015, 28(1): 44-47. |
| SHI Yan, HU Xiaohong, ZHOU Yuanquan. Hydrogen embrittlement and protection of Ti current collector/bipolar plate in PEM water electrolyser[J]. Space Medicine & Medical Engineering, 2015, 28(1): 44-47. |
| [1] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [2] | HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183. |
| [3] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
| [4] | ZHANG Zheng, LIU Lin, LI Zichen, WANG Mengqi, HUANG Chunyan, GE Yuanyuan. Preparation of copper-loaded geopolymer microspheres and their catalytic degradation of bisphenol S [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5290-5301. |
| [5] | LI Sheng, CHEN Yazhou, JIANG Wei, PENG Jie, FAN Caiwei, SHAO Meng. Numerical simulation of proton exchange membrane fuel cell catalyst ink mixing process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4800-4809. |
| [6] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
| [7] | LAN Ruisong, LIU Lihua, ZHANG Qian, CHEN Boyan, HONG Junming. Performance and biotoxicity evaluation of sulfur-doped graphene as a cathode for MFC [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3430-3439. |
| [8] | FENG Zhanxiong, ZHANG Chuang, LIU Dezheng, WANG Yun, MA Qiang, WANG Cheng. Effect of different atmosphere heat treatment on the oxygen reduction performance of Pt/C catalysts prepared by continuous pipeline microwave technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3080-3092. |
| [9] | ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567. |
| [10] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
| [11] | ZHU Taizhong, ZHANG Liang, HUANG Zequan, LUO Lingping, HUANG Fei, XUE Lixin. Preparation and characterization of gel polybenzimidazole proton exchange membrane with alkyl sulfonic acid side chains [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1962-1971. |
| [12] | GUO Meng, GUO Meixin, WEI Sijia, ZHAO Yujiao, JIA Xuan. Effect of pH on MEC desulfurization performance and microbial mechanism of action [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2219-2225. |
| [13] | QIAN Zhiguang, WANG Shixue, ZHU Yu, YUE Like. Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1754-1763. |
| [14] | CHEN Jiayi, GAO Weitao, YIN Yanan, WANG Cheng, OUYANG Hongwu, MAO Zongqiang. Preparation of PEMFC catalysts by electrodeposition [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1796-1809. |
| [15] | ZHOU Tianhong, ZHAI Tianjiao, WANG Jinyi, SU Xu, WANG Hualan, ZHANG Hongwei. Preparation of CoFe2O4/BiFeO3 Z-scheme heterojunction and its photocatalytic degradation of berberine hydrochloride [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6838-6848. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |