Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3592-3617.DOI: 10.16085/j.issn.1000-6613.2024-0671
• Resources and environmental engineering • Previous Articles
HAN Pei1(
), LI Jinjian1, KE Tian1, ZHANG Zhiguo1,2, BAO Zongbi1,2, REN Qilong1,2, YANG Qiwei1,2(
)
Received:2024-04-22
Revised:2024-06-06
Online:2025-07-08
Published:2025-06-25
Contact:
YANG Qiwei
韩沛1(
), 李金键1, 柯天1, 张治国1,2, 鲍宗必1,2, 任其龙1,2, 杨启炜1,2(
)
通讯作者:
杨启炜
作者简介:韩沛(1999—),男,硕士研究生,研究方向为分子辨识分离工程。E-mail:22128006@zju.edu.cn。
基金资助:CLC Number:
HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617.
韩沛, 李金键, 柯天, 张治国, 鲍宗必, 任其龙, 杨启炜. 新型多孔材料吸附分离六氟化硫/氮气研究进展[J]. 化工进展, 2025, 44(6): 3592-3617.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0671
| 新型多孔材料 | 吸附量/mmol·g-1 | IAST选择性 (SF6/N2=10/90) | 数据来源 | ||
|---|---|---|---|---|---|
| 100kPa,SF6 | 10kPa,SF6 | 100kPa,N2 | |||
| Cu3(btc)2 | 4.77 | — | — | — | [ |
| MIL-100(Fe) | 2.94 | — | — | — | [ |
| MIL-101(Cr) | 2.01 | — | — | — | [ |
| Zn4O(dmcpz)3 | 2.54 | — | — | — | [ |
| Co2(1,4-bdc)2(dabco) | 3.39 | — | — | — | [ |
| DUT-9 | 2.32 | — | — | — | [ |
| Zn4O(btb)2 | 3.12 | — | — | — | [ |
| HKUST-1a | 3.59 | 0.98 | 0.25 | 38 | [ |
| HKUST-1b | 4.02 | 1.19 | 0.25 | 50 | [ |
| HKUST-1c | 4.99 | 1.37 | 0.17 | 70 | [ |
| Zn-MOF-74 | 3.73 | 1.28 | 0.30 | 46 | [ |
| Co-MOF-74 | 5.34 | 1.96 | 0.59 | 38 | [ |
| Mg-MOF-74 | 6.42 | 1.82 | 1.06 | 37 | [ |
| CAU-17 | 1.61① | 1.12① | 0.38① | 31① | [ |
| HBU-21 | 0.95 | 0.35 | 0.04 | 184 | [ |
| UiO-67 | 3.87 | — | 0.14 | 22 | [ |
| UiO-66 | 1.67 | 0.80 | 0.12 | 140 | [ |
| UiO-66-NH2 | 1.67 | 0.80 | — | — | [ |
| UiO-66-Br | 1.20 | 0.73 | — | — | [ |
| UiO-66-Cl | 1.15 | 0.62 | — | — | [ |
| UiO-66-I | 1.37 | 0.80 | — | — | [ |
| UiO-66-NO2 | 1.31 | 0.72 | — | — | [ |
| UiO-66-Br2 | 0.92 | 0.73 | 0.14 | 220 | [ |
| Ni(pba)2 | 3.47 | 1.69 | 0.33 | 160 | [ |
| Ni(3-mpba)2 | 2.83 | 1.79 | 0.25 | 221 | [ |
| Co(3-mpba)2 | 3.25 | 1.77 | 0.34 | 161 | [ |
| Zn(BDC)(DABCO)0.5 | 3.48 | 0.57 | 0.15 | 32 | [ |
| Zn(DMBDC)(DABCO)0.5 | 4.77 | 1.40 | 0.15 | 119 | [ |
| Zn(TMBDC)(DABCO)0.5 | 4.61 | 2.48 | 0.33 | 239 | [ |
| Ni(ina)(bdc)0.5 | 2.25 | 0.78 | 0.18 | 53 | [ |
| Ni(3-min)(bdc)0.5 | 1.81 | 1.05 | 0.19 | 91 | [ |
| ZIF-8 | 0.15② | 0.01② | 0.10② | 1.69② | [ |
| ZIF-70.06-80.94 | 0.20② | 0.02② | 0.17② | 1.31② | [ |
| ZIF-70.20-80.80 | 1.40② | 0.29② | 0.17② | 21② | [ |
| ZIF-70.26-80.74 | 2.08② | 0.57② | 0.15② | 40② | [ |
| ZIF-70.37-80.63 | 1.81② | 0.48② | 0.14② | 34② | [ |
| ZIF-70.47-80.53 | 1.56② | 0.34② | 0.12② | 27② | [ |
| ZIF-70.52-80.48 | 1.19② | 0.27② | 0.15② | 22② | [ |
| ZIF-70.90-80.10 | 0.65② | 0.13② | 0.11② | 13② | [ |
| ZIF-70.98-80.02 | 0.51② | 0.13② | 0.09② | 15② | [ |
| ZIF-7 | 0.46② | 0.13② | 0.05② | 22② | [ |
| CAU-10 | 1.00 | 0.68 | 0.16 | 123 | [ |
| CAU-10-Py | 1.76 | 1.13 | 0.20 | 204 | [ |
| Sc-cage-MOF | 1.59 | 0.92 | 0.30 | 8.1 | [ |
| Fe-cage-MOF | 1.36 | 0.43 | 0.03 | 21 | [ |
| Co3(HCOO)6 | 2.18 | 1.63 | 0.18 | 125 | [ |
| Ni3(HCOO)6 | 1.00 | 0.37 | 0.17 | 19.2 | [ |
| Mn3(HCOO)6 | 1.28 | 1.06 | 0.11 | 263 | [ |
| Hf-TBAPy | 1.38② | 0.54② | 0.21② | 25② | [ |
| Tm-TBAPy | 1.83② | 1.22② | 0.25② | 48② | [ |
| Yb-TBAPy | 2.33② | 1.60② | 0.33② | 47② | [ |
| Ce-TBAPy | 2.16② | 1.47② | 0.31② | 47② | [ |
| Ga-TBAPy | 3.50② | 1.33② | 0.36② | 55② | [ |
| V-TBAPy | 3.28② | 1.33② | 0.33② | 65② | [ |
| Ga-TCPB | 3.07② | 2.26② | 0.33② | 418② | [ |
| V-TCPB | 2.95② | 2.29② | 0.36② | 361② | [ |
| Cu(peba)2 | 2.36 | 0.14 | 0.19 | 18 | [ |
| Ni(pba)2 | 3.50 | 1.67 | 0.26 | 201 | [ |
| Ni(ina)2 | 2.84 | 2.39 | 0.49 | 375 | [ |
| SNNU-202 | 4.55 | 0.33 | 0.12 | 9 | [ |
| SNNU-203 | 5.09 | 0.45 | 0.14 | 27 | [ |
| SNNU-204 | 6.92 | 0.72 | 0.13 | 49 | [ |
| Cu-MOF-NH2 | 7.88 | 3.39 | 0.27 | 266 | [ |
| TKL-107 | 3.97 | 1.26 | 0.19 | 180 | [ |
| BrCOF-2 | 1.25 | 0.13 | 0.17① | 17① | [ |
| BrCOF-2-CF3 | 1.45 | 0.24 | 0.16① | 39① | [ |
| 3D-TMTAPB-COF | 2.72 | 1.19 | 0.17 | 335 | [ |
| RCOF-1 | 3.46 | 1.50 | — | 83 | [ |
| RCOF-1-2 | 2.97 | 1.29 | — | 78 | [ |
| RCOF-1-3 | 2.49 | 1.08 | — | 88 | [ |
| RCOF-1-4 | 2.42 | 1.13 | — | 88 | [ |
| RCOF-1-5 | 1.11 | 0.50 | — | 52 | [ |
| RCOF-2 | 1.86 | 0.38 | — | 45 | [ |
| RCOF-3 | 0.58 | 0.12 | — | 25 | [ |
| COF-300 | 3.09 | 2.63 | — | 51 | [ |
| ACOF-1 | 2.15 | 0.65 | — | 54 | [ |
| FCOF-1 | 1.08 | 0.25 | — | 14 | [ |
| KFCOF-1 | 0.99 | 0.31 | — | 32 | [ |
| PPN0 | 1.52 | 0.62 | 0.17 | 42 | [ |
| PPN1 | 1.03 | 0.62 | 0.16 | 51 | [ |
| PPN2 | 0.94 | 0.39 | 0.10 | 45 | [ |
| POPTrA-4F | 1.12 | 0.51 | 0.04 | 62⑤ | [ |
| POPTrA-4F | 1.07 | 0.49 | 0.05 | 27⑤ | [ |
| POPTrB-4F | 1.78 | 0.80 | 0.04 | 63⑤ | [ |
| POPTrB-8F | 1.70 | 0.62 | 0.05 | 52⑤ | [ |
| New-PAF-1 | 45.07④ | 5.6④ | 2.27④ | 35 | [ |
| N-SO3H | 104.5④ | 34.5④ | 5.86④ | 40 | [ |
| PAF-XJTU-1 | 2.10 | — | 0.15 | 27⑤ | [ |
| PAF-XJTU-2 | 2.68 | — | 0.18 | 38⑤ | [ |
| PAF-XJTU-3 | 2.46 | — | 0.18 | 37⑤ | [ |
| PAF-XJTU-4 | 1.61 | — | 0.13 | 24⑤ | [ |
| CC2α | 1.03 | 0.27 | — | — | [ |
| CC3α | 2.29 | 0.88 | 0.14 | 73 | [ |
| CC5α | 1.90 | 0.38 | — | — | [ |
| CC13β | 1.64 | 0.05 | — | — | [ |
| [4[2+3]+6]笼 | 2.46 | 0.79 | — | — | [ |
| SBMOF-1 | 1.02 | 0.92 | 0.17 | 325 | [ |
| SU-100 | 2.07① | 1.86① | 0.51① | 36① | [ |
| CAU-33 | 1.04② | 0.38② | 0.22② | — | [ |
| SU-101 | 1.44② | 0.51② | 0.11② | 40② | [ |
| Ni(ndc)(ted)0.5 | 100④ | 61.9④ | 6.05④ | 750 | [ |
| UU-200 | 1.19② | 0.73② | 0.16② | 45② | [ |
| CTH-18 | 1.92② | 1.53② | 0.50② | 29② | [ |
| Ni(adc)(dabco)0.5 | 2.38 | 2.23 | 0.30 | 919 | [ |
| SIFSIX-2-Cu-i | 7.0③ | — | 0.2③ | 25③ | [ |
| YTU-30 | 68.6④ | 20.8 | 3.3④ | 68 | [ |
| 新型多孔材料 | 吸附量/mmol·g-1 | IAST选择性 (SF6/N2=10/90) | 数据来源 | ||
|---|---|---|---|---|---|
| 100kPa,SF6 | 10kPa,SF6 | 100kPa,N2 | |||
| Cu3(btc)2 | 4.77 | — | — | — | [ |
| MIL-100(Fe) | 2.94 | — | — | — | [ |
| MIL-101(Cr) | 2.01 | — | — | — | [ |
| Zn4O(dmcpz)3 | 2.54 | — | — | — | [ |
| Co2(1,4-bdc)2(dabco) | 3.39 | — | — | — | [ |
| DUT-9 | 2.32 | — | — | — | [ |
| Zn4O(btb)2 | 3.12 | — | — | — | [ |
| HKUST-1a | 3.59 | 0.98 | 0.25 | 38 | [ |
| HKUST-1b | 4.02 | 1.19 | 0.25 | 50 | [ |
| HKUST-1c | 4.99 | 1.37 | 0.17 | 70 | [ |
| Zn-MOF-74 | 3.73 | 1.28 | 0.30 | 46 | [ |
| Co-MOF-74 | 5.34 | 1.96 | 0.59 | 38 | [ |
| Mg-MOF-74 | 6.42 | 1.82 | 1.06 | 37 | [ |
| CAU-17 | 1.61① | 1.12① | 0.38① | 31① | [ |
| HBU-21 | 0.95 | 0.35 | 0.04 | 184 | [ |
| UiO-67 | 3.87 | — | 0.14 | 22 | [ |
| UiO-66 | 1.67 | 0.80 | 0.12 | 140 | [ |
| UiO-66-NH2 | 1.67 | 0.80 | — | — | [ |
| UiO-66-Br | 1.20 | 0.73 | — | — | [ |
| UiO-66-Cl | 1.15 | 0.62 | — | — | [ |
| UiO-66-I | 1.37 | 0.80 | — | — | [ |
| UiO-66-NO2 | 1.31 | 0.72 | — | — | [ |
| UiO-66-Br2 | 0.92 | 0.73 | 0.14 | 220 | [ |
| Ni(pba)2 | 3.47 | 1.69 | 0.33 | 160 | [ |
| Ni(3-mpba)2 | 2.83 | 1.79 | 0.25 | 221 | [ |
| Co(3-mpba)2 | 3.25 | 1.77 | 0.34 | 161 | [ |
| Zn(BDC)(DABCO)0.5 | 3.48 | 0.57 | 0.15 | 32 | [ |
| Zn(DMBDC)(DABCO)0.5 | 4.77 | 1.40 | 0.15 | 119 | [ |
| Zn(TMBDC)(DABCO)0.5 | 4.61 | 2.48 | 0.33 | 239 | [ |
| Ni(ina)(bdc)0.5 | 2.25 | 0.78 | 0.18 | 53 | [ |
| Ni(3-min)(bdc)0.5 | 1.81 | 1.05 | 0.19 | 91 | [ |
| ZIF-8 | 0.15② | 0.01② | 0.10② | 1.69② | [ |
| ZIF-70.06-80.94 | 0.20② | 0.02② | 0.17② | 1.31② | [ |
| ZIF-70.20-80.80 | 1.40② | 0.29② | 0.17② | 21② | [ |
| ZIF-70.26-80.74 | 2.08② | 0.57② | 0.15② | 40② | [ |
| ZIF-70.37-80.63 | 1.81② | 0.48② | 0.14② | 34② | [ |
| ZIF-70.47-80.53 | 1.56② | 0.34② | 0.12② | 27② | [ |
| ZIF-70.52-80.48 | 1.19② | 0.27② | 0.15② | 22② | [ |
| ZIF-70.90-80.10 | 0.65② | 0.13② | 0.11② | 13② | [ |
| ZIF-70.98-80.02 | 0.51② | 0.13② | 0.09② | 15② | [ |
| ZIF-7 | 0.46② | 0.13② | 0.05② | 22② | [ |
| CAU-10 | 1.00 | 0.68 | 0.16 | 123 | [ |
| CAU-10-Py | 1.76 | 1.13 | 0.20 | 204 | [ |
| Sc-cage-MOF | 1.59 | 0.92 | 0.30 | 8.1 | [ |
| Fe-cage-MOF | 1.36 | 0.43 | 0.03 | 21 | [ |
| Co3(HCOO)6 | 2.18 | 1.63 | 0.18 | 125 | [ |
| Ni3(HCOO)6 | 1.00 | 0.37 | 0.17 | 19.2 | [ |
| Mn3(HCOO)6 | 1.28 | 1.06 | 0.11 | 263 | [ |
| Hf-TBAPy | 1.38② | 0.54② | 0.21② | 25② | [ |
| Tm-TBAPy | 1.83② | 1.22② | 0.25② | 48② | [ |
| Yb-TBAPy | 2.33② | 1.60② | 0.33② | 47② | [ |
| Ce-TBAPy | 2.16② | 1.47② | 0.31② | 47② | [ |
| Ga-TBAPy | 3.50② | 1.33② | 0.36② | 55② | [ |
| V-TBAPy | 3.28② | 1.33② | 0.33② | 65② | [ |
| Ga-TCPB | 3.07② | 2.26② | 0.33② | 418② | [ |
| V-TCPB | 2.95② | 2.29② | 0.36② | 361② | [ |
| Cu(peba)2 | 2.36 | 0.14 | 0.19 | 18 | [ |
| Ni(pba)2 | 3.50 | 1.67 | 0.26 | 201 | [ |
| Ni(ina)2 | 2.84 | 2.39 | 0.49 | 375 | [ |
| SNNU-202 | 4.55 | 0.33 | 0.12 | 9 | [ |
| SNNU-203 | 5.09 | 0.45 | 0.14 | 27 | [ |
| SNNU-204 | 6.92 | 0.72 | 0.13 | 49 | [ |
| Cu-MOF-NH2 | 7.88 | 3.39 | 0.27 | 266 | [ |
| TKL-107 | 3.97 | 1.26 | 0.19 | 180 | [ |
| BrCOF-2 | 1.25 | 0.13 | 0.17① | 17① | [ |
| BrCOF-2-CF3 | 1.45 | 0.24 | 0.16① | 39① | [ |
| 3D-TMTAPB-COF | 2.72 | 1.19 | 0.17 | 335 | [ |
| RCOF-1 | 3.46 | 1.50 | — | 83 | [ |
| RCOF-1-2 | 2.97 | 1.29 | — | 78 | [ |
| RCOF-1-3 | 2.49 | 1.08 | — | 88 | [ |
| RCOF-1-4 | 2.42 | 1.13 | — | 88 | [ |
| RCOF-1-5 | 1.11 | 0.50 | — | 52 | [ |
| RCOF-2 | 1.86 | 0.38 | — | 45 | [ |
| RCOF-3 | 0.58 | 0.12 | — | 25 | [ |
| COF-300 | 3.09 | 2.63 | — | 51 | [ |
| ACOF-1 | 2.15 | 0.65 | — | 54 | [ |
| FCOF-1 | 1.08 | 0.25 | — | 14 | [ |
| KFCOF-1 | 0.99 | 0.31 | — | 32 | [ |
| PPN0 | 1.52 | 0.62 | 0.17 | 42 | [ |
| PPN1 | 1.03 | 0.62 | 0.16 | 51 | [ |
| PPN2 | 0.94 | 0.39 | 0.10 | 45 | [ |
| POPTrA-4F | 1.12 | 0.51 | 0.04 | 62⑤ | [ |
| POPTrA-4F | 1.07 | 0.49 | 0.05 | 27⑤ | [ |
| POPTrB-4F | 1.78 | 0.80 | 0.04 | 63⑤ | [ |
| POPTrB-8F | 1.70 | 0.62 | 0.05 | 52⑤ | [ |
| New-PAF-1 | 45.07④ | 5.6④ | 2.27④ | 35 | [ |
| N-SO3H | 104.5④ | 34.5④ | 5.86④ | 40 | [ |
| PAF-XJTU-1 | 2.10 | — | 0.15 | 27⑤ | [ |
| PAF-XJTU-2 | 2.68 | — | 0.18 | 38⑤ | [ |
| PAF-XJTU-3 | 2.46 | — | 0.18 | 37⑤ | [ |
| PAF-XJTU-4 | 1.61 | — | 0.13 | 24⑤ | [ |
| CC2α | 1.03 | 0.27 | — | — | [ |
| CC3α | 2.29 | 0.88 | 0.14 | 73 | [ |
| CC5α | 1.90 | 0.38 | — | — | [ |
| CC13β | 1.64 | 0.05 | — | — | [ |
| [4[2+3]+6]笼 | 2.46 | 0.79 | — | — | [ |
| SBMOF-1 | 1.02 | 0.92 | 0.17 | 325 | [ |
| SU-100 | 2.07① | 1.86① | 0.51① | 36① | [ |
| CAU-33 | 1.04② | 0.38② | 0.22② | — | [ |
| SU-101 | 1.44② | 0.51② | 0.11② | 40② | [ |
| Ni(ndc)(ted)0.5 | 100④ | 61.9④ | 6.05④ | 750 | [ |
| UU-200 | 1.19② | 0.73② | 0.16② | 45② | [ |
| CTH-18 | 1.92② | 1.53② | 0.50② | 29② | [ |
| Ni(adc)(dabco)0.5 | 2.38 | 2.23 | 0.30 | 919 | [ |
| SIFSIX-2-Cu-i | 7.0③ | — | 0.2③ | 25③ | [ |
| YTU-30 | 68.6④ | 20.8 | 3.3④ | 68 | [ |
| 活性炭与分子筛 | 吸附量/mmol·g-1 | IAST选择性 (SF6/N2=10/90) | 数据来源 | ||
|---|---|---|---|---|---|
| 100kPa,SF6 | 10kPa,SF6 | 100kPa,N2 | |||
| CNHs | 3.56⑥ | 1.30⑥ | 0.36⑥ | 44⑥ | [ |
| 13X | 1.96 | 0.99 | 0.33 | 56.5 | [ |
| 商用AC | 2.50 | 1.00 | — | 45.0 | [ |
| PC-CaCit | 3.61 | 1.05 | 0.33 | 30 | [ |
| PC-MgCit | 3.34 | 0.92 | 0.31 | 30 | [ |
| 高硅沸石 | 1.99① | 1.73① | — | — | [ |
| ACK0 | 2.71 | 0.99 | 0.23 | 481 | [ |
| ACK1 | 3.10 | 1.96 | 0.23 | 684 | [ |
| ACK2 | 3.03 | 1.96 | 0.40 | 591 | [ |
| ACK3 | 3.26 | 1.98 | 0.42 | 473 | [ |
| ACK4 | 2.68 | 1.52 | 0.40 | 260 | [ |
| PC-700 | 2.67 | 1.74 | 0.40 | 150 | [ |
| PC-750 | 4.09 | 2.17 | 0.45 | 436 | [ |
| PC-800 | 4.82 | 1.64 | 0.30 | 331 | [ |
| MFI-1 | 1.45 | 0.86 | 0.96 | 106 | [ |
| MFI-2 | 1.28 | 0.71 | 0.89 | 78 | [ |
| Carbosieve G | 3.30② | 1.76② | — | — | [ |
| Westvaco | 1.96③ | 0.61② | — | — | [ |
| Maxsorb | 5.40④ | 1.87④ | — | — | [ |
| 模板衍生碳 | 0.75 | 0.27 | — | — | [ |
| AC-1 | 2.86⑤ | — | 0.29⑤ | — | [ |
| ZX | 1.54⑤ | — | 0.25⑤ | — | [ |
| 活性炭与分子筛 | 吸附量/mmol·g-1 | IAST选择性 (SF6/N2=10/90) | 数据来源 | ||
|---|---|---|---|---|---|
| 100kPa,SF6 | 10kPa,SF6 | 100kPa,N2 | |||
| CNHs | 3.56⑥ | 1.30⑥ | 0.36⑥ | 44⑥ | [ |
| 13X | 1.96 | 0.99 | 0.33 | 56.5 | [ |
| 商用AC | 2.50 | 1.00 | — | 45.0 | [ |
| PC-CaCit | 3.61 | 1.05 | 0.33 | 30 | [ |
| PC-MgCit | 3.34 | 0.92 | 0.31 | 30 | [ |
| 高硅沸石 | 1.99① | 1.73① | — | — | [ |
| ACK0 | 2.71 | 0.99 | 0.23 | 481 | [ |
| ACK1 | 3.10 | 1.96 | 0.23 | 684 | [ |
| ACK2 | 3.03 | 1.96 | 0.40 | 591 | [ |
| ACK3 | 3.26 | 1.98 | 0.42 | 473 | [ |
| ACK4 | 2.68 | 1.52 | 0.40 | 260 | [ |
| PC-700 | 2.67 | 1.74 | 0.40 | 150 | [ |
| PC-750 | 4.09 | 2.17 | 0.45 | 436 | [ |
| PC-800 | 4.82 | 1.64 | 0.30 | 331 | [ |
| MFI-1 | 1.45 | 0.86 | 0.96 | 106 | [ |
| MFI-2 | 1.28 | 0.71 | 0.89 | 78 | [ |
| Carbosieve G | 3.30② | 1.76② | — | — | [ |
| Westvaco | 1.96③ | 0.61② | — | — | [ |
| Maxsorb | 5.40④ | 1.87④ | — | — | [ |
| 模板衍生碳 | 0.75 | 0.27 | — | — | [ |
| AC-1 | 2.86⑤ | — | 0.29⑤ | — | [ |
| ZX | 1.54⑤ | — | 0.25⑤ | — | [ |
| [1] | RAVISHANKARA A R, SOLOMON S, TURNIPSEED A A, et al. Atmospheric lifetimes of long-lived halogenated species[J]. Science, 1993, 259(5092): 194-199. |
| [2] | CHRISTOPHOROU L G, VANBRUNT R J. SF6/N2 mixtures: basic and HV insulation properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5): 952-1003. |
| [3] | MONTZKA S A, DLUGOKENCKY E J, BUTLER J H. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476(7358): 43-50. |
| [4] | STENNING A H, MARTIN C B. An analytical and experimental study of air lift pump performance[J]. Journal of Engineering for Power, 1968, 90: 106-110. |
| [5] | XU Gang, LIANG Fei Fei, YANG Yong Ping, et al. An improved CO2 separation and purification system based on cryogenic separation and distillation theory[J]. Energies, 2014, 7(5): 3484-3502. |
| [6] | MALEK A H, FAROOQ S. Hydrogen purification from refinery fuel gas by pressure swing adsorption[J]. AIChE Journal, 1998, 44(9): 1985-1992. |
| [7] | TAKASE Atsushi, KANOH Hirofumi, OHBA Tomonori. Wide carbon nanopores as efficient sites for the separation of SF6 from N2 [J]. Scientific Reports, 2015, 5: 11994. |
| [8] | CHIANG Yu Chun, WU Po Yun. Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2010, 178(/2/3): 729-738. |
| [9] | CAO D V, SIRCAR S. Heat of adsorption of pure sulfur hexafluoride on micro-mesoporous adsorbents[J]. Adsorption-journal of the International Adsorption Society, 2001, 7(1): 73-80. |
| [10] | DUNNE J A, MARIWALS R, RAO M, et al. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6 and SF6 on silicalite[J]. Langmuir, 1996, 12(24): 5888-5895. |
| [11] | YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
| [12] | FAN Weidong, ZHANG Xiurong, KANG Zixi, et al. Isoreticular chemistry within metal-organic frameworks for gas storage and separation[J]. Coordination Chemistry Reviews, 2021, 443: 213968. |
| [13] | FURUKAWA Hiroyasu, YAGHI Omar M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
| [14] | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
| [15] | LIU Ying, DAI Juanjuan, ZHANG Zhiguo, et al. Crystal structure transformation in hydrogen-bonded organic frameworks via ion exchange[J]. Chemistry: An Asian Journal, 2021, 16(23): 3978-3984. |
| [16] | LIN Ruibiao, HE Yabing, LI Peng, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chemical Society Reviews, 2019, 48(5): 1362-1389. |
| [17] | HASELL Tom, COOPER Andrew I. Porous organic cages: soluble, modular and molecular pores[J]. Nature Reviews Materials, 2016, 1(9): 16053. |
| [18] | LIU Ying, WU Hui, GUO Lidong, et al. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton[J]. Angewandte Chemie International Edition, 2022, 61(11): 202117609. |
| [19] | LI Li Bo, LIN Rui Biao, KRISHNA Rajamani, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
| [20] | ZHOU Jingyi, KE Tian, STEINKE Felix, et al. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure[J]. Journal of the American Chemical Society, 2022, 144(31): 14322-14329. |
| [21] | ZENG Heng, XIE Mo, WANG Ting, et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021, 595(7868): 542-548. |
| [22] | ZHU Xiaoqian, KE Tian, ZHOU Jingyi, et al. Vertex strategy in layered 2D MOFs: Simultaneous improvement of thermodynamics and kinetics for record C2H2/CO2 separation performance[J]. Journal of the American Chemical Society, 2023, 145(16): 9254-9263. |
| [23] | ZHENG Fang, CHEN Rundao, DING Zexiang, et al. Interlayer symmetry control in flexible-robust layered metal-organic frameworks for highly efficient C2H2/CO2 Separation[J]. Journal of the American Chemical Society, 2023, 145(36): 19903-19911. |
| [24] | WANG Pengfei, TENG Ying, ZHU Jinlong, et al. Review on the synergistic effect between metal-organic frameworks and gas hydrates for CH4 storage and CO2 separation applications[J]. Renewable & Sustainable Energy Reviews, 2022, 167: 112807. |
| [25] | Felix SAHAYARAJ A, Joy PRABU H, MANIRAJ J, et al. Metal-organic frameworks (MOFs): The next generation of materials for catalysis, gas storage, and separation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(7): 1757-1781. |
| [26] | WU Dan, ZHANG Pengfeng, YANG Guoping, et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications[J]. Coordination Chemistry Reviews, 2021, 434: 213709. |
| [27] | NANDASIRI Manjula I, JAMBOVANE Sachin R, Peter MCGRAIL B, et al. Adsorption, separation, and catalytic properties of densified metal-organic frameworks[J]. Coordination Chemistry Reviews, 2016, 311: 38-52. |
| [28] | LEE Gyudong, YOO Dong Kyu, AHMED Imteaz, et al. Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis[J]. Chemical Engineering Journal, 2023, 451: 138538. |
| [29] | LEE Jeong Yong, FARHA Omar K, ROBERTS John, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459. |
| [30] | SHEN Yu, PAN Ting, WANG Liu, et al. Programmable logic in metal-organic frameworks for catalysis[J]. Advanced Materials, 2021, 33(46): 2007442. |
| [31] | LIU Chunsen, LI Jingjing, PANG Huan. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing[J]. Coordination Chemistry Reviews, 2020, 410: 213222. |
| [32] | RICE Allison M, MARTIN Corey R, GALITSKIY Vladimir A, et al. Photophysics modulation in photoswitchable metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8790-8813. |
| [33] | ALLENDORF Mark D, DONG Renhao, FENG Xinliang, et al. Electronic devices using open framework materials[J]. Chemical Reviews, 2020, 120(16): 8581-8640. |
| [34] | LIANG Weibin, WIED Peter, CARRARO Francesco, et al. Metal-organic framework-based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3): 1077-1129. |
| [35] | NATARAJAN Srinivasan, MAHATA Partha. Metal-organic framework structures—How closely are they related to classical inorganic structures?[J]. Chemical Society Reviews, 2009, 38(8): 2304-2318. |
| [36] | THALLAPALLY Praveen K, GRATE Jay W, MOTKURI Radha Kishan. Facile xenon capture and release at room temperature using a metal-organic framework: A comparison with activated charcoal[J]. Chemical Communications, 2012, 48(3): 347-349. |
| [37] | WANG Lisa J, DENG Hexiang, FURUKAWA Hiroyasu, et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals[J]. Inorganic Chemistry, 2014, 53(12): 5881-5883. |
| [38] | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
| [39] | YANG Huajun, PENG Fang, DANG Candy, et al. Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn[J]. Journal of the American Chemical Society, 2019, 141(25): 9808-9812. |
| [40] | PEI Jiyan, WANG Jiaxin, SHAO Kai, et al. Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2020, 8(7): 3613-3620. |
| [41] | COLOMBO Valentina, MONTORO Carmen, MASPERO Angelo, et al. Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification[J]. Journal of the American Chemical Society, 2012, 134(30): 12830-12843. |
| [42] | LIU Jian, THALLAPALLY Praveen K, STRACHAN Denis. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants[J]. Langmuir, 2012, 28(31): 11584-11589. |
| [43] | SENKOVSKA Irena, BAREA Elisa, NAVARRO Navarro Jorge Andres, et al. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks[J]. Microporous and Mesoporous Materials, 2012, 156: 115-120. |
| [44] | CHUAH Chong Yang, Kun Li GOH, Tae Hyun BAE. Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery[J]. Journal of Physical Chemistry C, 2017, 121(12): 6748-6755. |
| [45] | KIM Min Bum, LEE Seung Joon, LEE Chang Yeon, et al. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites[J]. Microporous and Mesoporous Materials, 2014, 190: 356-361. |
| [46] | Milan KÖPPEN, DHAKSHINAMOORTHY Amarajothi, Ken INGE A, et al. Synthesis, transformation, catalysis, and gas sorption investigations on the bismuth metal-organic framework CAU-17[J]. European Journal of Inorganic Chemistry, 2018, (30): 3496-3503. |
| [47] | YAN Jiangwen, GANG Shuqi, LIU Ziyue, et al. An In(Ⅲ)-MOF based on pore engineering for efficient capture SF6 from SF6/N2 mixture[J]. Separation and Purification Technology, 2023, 327: 124929. |
| [48] | KIM Min Bum, YOON Tae Ung, HONG Do Young, et al. High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal-organic framework[J]. Chemical Engineering Journal, 2015, 276: 315-321. |
| [49] | KIM Min Bum, KIM Tea Hoon, YOON Tae Ung, et al. Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal-organic framework[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 179-184. |
| [50] | KIM Min Bum, KIM Kyung Min, KIM Tea Hoon, et al. Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework[J]. Chemical Engineering Journal, 2018, 339: 223-229. |
| [51] | ZHENG Sutao, JIANG Runyuan, JIANG Yu, et al. Methyl-functionalized microporous metal-organic framework for efficient SF6/N2 separation[J]. Separation and Purification Technology, 2023, 318: 123957. |
| [52] | YAN Le, ZHENG Huiting, SONG Liang, et al. Methyl-functionalized flexible ultra-microporous MOF for efficient SF6/N2 mixture separation[J]. Chemical Engineering Journal, 2023, 472: 145145. |
| [53] | LIU Haoran, WANG Shaomin, DONG Yongli, et al. Control of pore environment in nickel-based metal-organic frameworks for SF6/N2 separation[J]. Chinese Journal of Structural Chemistry, 2023, 42(2): 100022. |
| [54] | Michelle ÅHLÉN, JAWORSKI Aleksander, STROMME Maria, et al. Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7-8s: The effect of linker substitution on uptake capacity and kinetics[J]. Chemical Engineering Journal, 2021, 422: 130117. |
| [55] | HU Yongqi, WANG Lingyao, Ruihan NAN, et al. Pore engineering in cost-effective and stable Al-MOFs for efficient capture of the greenhouse gas SF6 [J]. Chemical Engineering Journal, 2023, 471: 144851. |
| [56] | WANG Hao, SHI Le, XIONG Zhangyi, et al. A two-dimensional metal-organic framework assembled from scandium-based cages for the selective capture of sulfur hexafluoride[J]. Chemical Communications, 2024, 60(17): 2397-2400. |
| [57] | WANG Hao, SHI Le, CAO Honghao, et al. Synthesis of an iron-based metal-organic framework with octahedral cages for the selective capture of sulfur hexafluoride[J]. CrystEngComm, 2024, 26(13): 1912-1916. |
| [58] | WU Yue, YAN Tong, ZHANG Wenxiang, et al. Adsorption interface-induced H…F charge transfer in ultramicroporous metal-organic frameworks for perfluorinated gas separation[J]. Industrial & Engineering Chemistry Research, 2022, 61(36): 13603-13611. |
| [59] | Michelle ÅHLÉN, Francoise M Amombo NOA, Lars ÖHRSTRÖM, et al. Pore size effect of 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity[J]. Microporous and Mesoporous Materials, 2022, 343: 112161. |
| [60] | Michelle AHLÉN, ZHOU Yi, HEDBOM Daniel, et al. Efficient SF6 capture and separation in robust gallium- and vanadium-based metal-organic frameworks[J]. Journal of Materials Chemistry A, 2023, 11(48): 26435-26441. |
| [61] | WANG Shaomin, MU Xuantong, LIU Haoran, et al. Pore-structure control in metal-organic frameworks (MOFs) for capture of the greenhouse gas SF6 with record separation[J]. Angewandte Chemie-International Edition, 2022, 61(33): 202207066. |
| [62] | LI Yongpeng, NI Jingjing, LI Shuo, et al. Rational pore-window size control in three Cu-MOFs with different pore environments for efficient capture of the greenhouse gas SF6 [J]. Journal of Solid State Chemistry, 2024, 329: 124443. |
| [63] | REN Jiahao, CHANG Miao, ZENG Wenjiang, et al. Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture[J]. Chemistry of Materials, 2021, 33(13): 5108-5114. |
| [64] | HE Yanjing, CAO Xiaohao, ZHANG Zhengqing, et al. Discovery of high-performing metal-organic frameworks for efficient SF6/N2 separation: a combined computational screening, machine learning, and experimental study[J]. Industrial & Engineering Chemistry Research, 2023, 62(19): 7642-7649. |
| [65] | LIAO Qiaobo, KE Can, HUANG Xin, et al. A versatile method for functionalization of covalent organic frameworks via Suzuki-Miyaura cross-coupling[J]. Angewandte Chemie International Edition, 2021, 60(3): 1411-1416. |
| [66] | YIN Ying, ZHANG Ya, ZHOU Xu, et al. Single-crystal three-dimensional covalent organic framework constructed from 6-connected triangular prism node[J]. Journal of the American Chemical Society, 2023, 145(41): 22329-22334. |
| [67] | LIAO Qiaobo, XU Haocheng, KE Can, et al. Rational regulating pore structures of covalent organic frameworks for sulfur hexafluoride capture and separation[J]. Separation and Purification Technology, 2023, 306: 122595. |
| [68] | ZHENG Xianqiang, SHEN Yanlong, WANG Shitao, et al. Selective adsorption of SF6 in covalent- and metal-organic frameworks[J]. Chinese Journal of Chemical Engineering, 2021, 39: 88-95. |
| [69] | SEKIZKARDES Ali K, WANG Ping, HOFFMAN James, et al. Amine-functionalized porous organic polymers for carbon dioxide capture[J]. Materials Advances, 2022, 3(17): 6668-6686. |
| [70] | TAN Liangxiao, TAN Bi’en. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
| [71] | CHUAH Chong Yang, YANG Yan Qin, Tae Hyun BAE. Hierarchically porous polymers containing triphenylamine for enhanced SF6 separation[J]. Microporous and Mesoporous Materials, 2018, 272: 232-240. |
| [72] | ZHANG Wenxiang, LI Yinhui, WU Yue, et al. Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching[J]. Separation and Purification Technology, 2022, 287: 120561. |
| [73] | ZHANG Wenxiang, WU Yue, LI Yinhui, et al. Fluorine-functionalized porous organic polymers for durable F-gas capture from semiconductor etching exhaust[J]. Macromolecules, 2022, 55(4): 1435-1444. |
| [74] | WANG Shanshan, WU Yue, ZHANG Ying, et al. HF resistant porous aromatic frameworks for electronic special gases separation[J]. Langmuir, 2022, 38(28): 8667-8676. |
| [75] | WU Yue, LI Xiaoyu, LI Yinhui, et al. Porous aromatic frameworks as HF resistant adsorbents for SF6 separation at elevated pressure[J]. Separation and Purification Technology, 2023, 315: 123657. |
| [76] | HASELL Tom, MIKLITZ Marcin, STEPHENSON Andrew, et al. Porous organic cages for sulfur hexafluoride separation[J]. Journal of the American Chemical Society, 2016, 138(5): 1653-1659. |
| [77] | ZHU Qiang, QU Hang, AVCI Gokay, et al. Computationally guided synthesis of a hierarchical [4[2+3]+6] porous organic ‘cage of cages’[J]. Nature Synthesis, 2024, 3: 825-834. |
| [78] | WANG Tongge, CHANG Miao, YAN Tong’an, et al. Calcium-based metal-organic framework for efficient capture of sulfur hexafluoride at low concentrations[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5976-5983. |
| [79] | GRAPE Erik Svensson, XU Hongyi, CHEUNG Ocean, et al. Breathing metal-organic framework based on flexible inorganic building units[J]. Crystal Growth & Design, 2020, 20(1): 320-329. |
| [80] | Michelle ÅHLÉN, KAPACA Elina, HEDBOM Daniel, et al. Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200[J]. Microporous and Mesoporous Materials, 2022, 329: 111548. |
| [81] | YANG Mingshan, CHANG Miao, YAN Tong’an, et al. A nickel-based metal-organic framework for efficient SF6/N2 separation with record SF6 uptake and SF6/N2 selectivity[J]. Separation and Purification Technology, 2022, 295: 121340. |
| [82] | Francoise Amombo M NOA, CHEUNG Ocean, Michelle AHLÉN, et al. A hexagon based Mn(Ⅱ) rod metal-organic framework-structure, SF6 gas sorption, magnetism and electrochemistry[J]. Chemical Communications, 2023, 59(15): 2106-2109. |
| [83] | CHANG Miao, Yan Tong’an, WEI Yan, et al. Metal-organic framework-based single-molecule SF6 trap for record SF6 capture[J]. Chemistry of Materials, 2022, 34(20): 9134-9143. |
| [84] | SKARMOUTSOS Ioannis, EDDAOUDI Mohamed, MAURIN Guillaume. Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks[J]. Microporous and Mesoporous Materials, 2019, 281: 44-49. |
| [85] | LI Yongpeng, ZHANG Xiaojie, NI Jingjing, et al. Design of a highly-stable cobalt (Ⅱ) porous framework based on aromatic stacking strategy for efficient SF6 capture and SF6/N2 mixture separation[J]. Separation and Purification Technology, 2024, 343: 126995. |
| [86] | YANG Yanqin, Kun Li GOH, CHUAH Chong Yang, et al. Sub-Angstrom-level engineering of ultramicroporous carbons for enhanced sulfur hexafluoride capture[J]. Carbon, 2019, 155: 56-64. |
| [87] | SUN Rui, TAI Cheuk Wai, STROMME Maria, et al. Hierarchical porous carbon synthesized from novel porous amorphous calcium or magnesium citrate with enhanced SF6 uptake and SF6/N2 selectivity[J]. ACS Applied Nano Materials, 2019, 2(2): 778-89. |
| [88] | S Sun MATTHEW, SHAH D B., H Xu HEATHER, et al. Adsorption equilibria of C1 to C4 alkanes, CO2, and SF6 on silicalite [J]. Journal of Physical Chemistry B, 1998, 102(8): 1466-1473. |
| [89] | WANG Jian, FU Wenxu, WANG Limei, et al. Modulation of pore structure in a microporous carbon for enhanced adsorption of perfluorinated electron specialty gases with efficient separation[J]. Chemical Engineering Journal, 2023, 477: 147128. |
| [90] | FU Wenxu, WANG Jian, LI Yulin, et al. Highly-efficient separation of SF6/N2 and NF3/N2 with record selectivity on one-step synthesized carbon nanosheet[J]. Separation and Purification Technology, 2024, 330: 125496. |
| [91] | CHUAH Chong Yang, YU Suyeon, NA Kyungsu, et al. Enhanced SF6 recovery by hierarchically structured MFI zeolite[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 64-71. |
| [92] | JAGIELLO Jacek, BANDOSZ Teresa J, PUTYERA Karol, et al. Adsorption near ambient temperatures of methane, carbon tetrafluoride, and sulfur hexafluoride on commercial activated carbons [J]. Journal of Chemical and Engineering Data, 1995, 40(6): 1288-1292. |
| [93] | JAGIELLO Jacek, BANDOSZ Teresa J, PUTYERA Karol, et al. Micropore structure of template-derived carbons studied using adsorption of gases with different molecular diameters[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(17): 2929-2933. |
| [94] | CHO Wan Seon, LEE Kwang Hoon, CHANG Hyang Ja, et al. Evaluation of pressure-temperature swing adsorption for sulfur hexafluoride (SF6) recovery from SF6 and N2 gas mixture[J]. Korean Journal of Chemical Engineering, 2011, 28: 2196-2201. |
| [95] | 朱峰, 宋玉梅, 许一力, 等. 应用金属-有机框架材料吸附分离六氟化硫中八氟丙烷的方法: CN114471468A[P]. 2022-05-13. |
| ZHU Feng, SONG Yu Mei, XU Yi Li, et al. Method for adsorption and separation of octafluoropropane from sulfur hexafluoride using metal-organic framework materials: CN114471468A[P]. 2022-05-13. | |
| [96] | 唐炬, 曾福平, 梁鑫, 等. 两种吸附剂对SF6分解特征组分吸附的实验与分析[J]. 中国电机工程学报, 2013(31): 211-219. |
| Tang Ju, ZENG Fu Ping, LIANG Xin, et al. Experimental and analytical study on the adsorption of characteristic components of SF6 decomposition by two adsorbents[J]. Proceedings of the CSEE, 2013(31): 211-219. | |
| [97] | 刘耀. 沸石多孔材料对SF6分解气体的气敏性和分离性能仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
| LIU Yao. Simulation reaserch on insulating gas adsorption and catalytic performance of porous materials with zeolite structure[D]. Harbin University of Science and Technology, 2022. | |
| [98] | 钟理鹏, 汲胜昌, 李金宇, 等. 吸附剂对SF6典型分解产物含量及变化规律的影响[J]. 西安交通大学学报, 2015, 49(2): 86-92. |
| ZHONG Lipeng, JI Shengchang, LI Jinyu, et al. The influence of adsorbents on the content and variation pattern of typical decomposition products of SF6 [J]. Journal of Xi’an Jiaotong University, 2015, 49(2): 86-92. | |
| [99] | 朱登军, 杨镇宁, 杨勇, 等. SF6开关设备微水含量优化处理[J]. 电气开关, 2018, 56(5): 11-13. |
| ZHU Dengjun, YANG Zhenning, YANG Yong, et al. Optimization treatment of micro water content in SF6 switchgear[J]. Electric Switchgear, 2018, 56(5): 11-13. |
| [1] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [2] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
| [3] | CHEN Le, CHONG Hailing, ZHANG Zhihui, HE Mingyang, CHEN Qun. Synthesis of Cu-BTC modified by CTAB and its adsorption and separation of xylene isomers [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 455-464. |
| [4] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
| [5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
| [6] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
| [7] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
| [8] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
| [9] | CHEN Shuhui, WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping. Preparation of ionic organic porous polymer and its coupled desulfurization and decarbonization properties in flue gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1028-1038. |
| [10] | WU Luming, YU Haibin, ZANG Jiazhong, WANG Yaquan, LI Bin, SUN Zhenhai. Synthesis of hierarchically porous aluminosilicate nanospheres and their adsorption and separation of polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6452-6460. |
| [11] | HU Peng, ZHAO Dan, JI Hongbing. Temperature-controlled biomimetic induced-fit-identification for boosting syngas purification [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6133-6135. |
| [12] | HUA Guoyan, XU Xiaoming, CHEN Yuxuan, ZHANG Yanhong, LIU Fuqiang. Progress and prospects of MOFs-based membranes for Mg-Li separation [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5776-5785. |
| [13] | CAO Mingmin, HAN Chengle, YANG Fang, CHEN Yuhuan. CO2 capture and separation by ionic liquid-metal organic framework composite materials [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5831-5841. |
| [14] | ZHANG Jinhui, ZHANG Huan, ZHU Xinfeng, SONG Zhongxian, KANG Haiyan, LIU Hongpan, DENG Wei, HOU Guangchao, LI Guiting, HUANG Zhenzhen. Research progress of UiO-66 materials for adsorption and photocatalytic oxidation of typical organic compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 445-456. |
| [15] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |