Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3468-3485.DOI: 10.16085/j.issn.1000-6613.2024-0639
• Industrial catalysis • Previous Articles
KONG Xiaoyang(
), LIU Zhentao, ZOU Yutong, WANG Dandan, DUAN Aijun, XU Chunming, WANG Xilong(
)
Received:2024-04-16
Revised:2024-07-01
Online:2025-07-08
Published:2025-06-25
Contact:
WANG Xilong
孔肖阳(
), 刘振涛, 邹予桐, 王丹丹, 段爱军, 徐春明, 王喜龙(
)
通讯作者:
王喜龙
作者简介:孔肖阳(1999—),女,博士研究生,研究方向为清洁油品催化剂制备。E-mail:kong83820@163.com。
基金资助:CLC Number:
KONG Xiaoyang, LIU Zhentao, ZOU Yutong, WANG Dandan, DUAN Aijun, XU Chunming, WANG Xilong. Development in catalysts for hydrocracking of polycyclic aromatic hydrocarbons to BTX[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3468-3485.
孔肖阳, 刘振涛, 邹予桐, 王丹丹, 段爱军, 徐春明, 王喜龙. 多环芳烃加氢裂化制BTX催化剂研究进展[J]. 化工进展, 2025, 44(6): 3468-3485.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0639
| 项目 | 十六烷值 | 烷烃/% | 环烷烃/% | 芳烃/% | 单环芳烃/% | 双环芳烃/% | 三环芳烃/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 国Ⅵ(B)柴油标准 | ≥51 | — | — | — | — | ≤7 | — | [ |
| 茂名LCO | 27.5 | 23.7 | 11.8 | 64.5 | 24.2 | 35.2 | 5.1 | [ |
| 石家庄LCO | — | 12.3 | 5.2 | 82.5 | 25.8 | 44.1 | 12.6 | [ |
| 高桥LCO | — | 17.1 | 10.6 | 72.3 | 20.3 | 41.9 | 10.1 | [ |
| 齐鲁LCO | — | 7.0 | 3.1 | 89.9 | 29.0 | 52.0 | 8.9 | [ |
| Repsol YPF LCO | 27 | 18.9 | 14.3 | 66.8 | — | 28.3 | 16.4 | [ |
| Abu Dhabi LCO | — | — | — | 89.7 | 27.6 | 59.5 | 2.6 | [ |
| 项目 | 十六烷值 | 烷烃/% | 环烷烃/% | 芳烃/% | 单环芳烃/% | 双环芳烃/% | 三环芳烃/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 国Ⅵ(B)柴油标准 | ≥51 | — | — | — | — | ≤7 | — | [ |
| 茂名LCO | 27.5 | 23.7 | 11.8 | 64.5 | 24.2 | 35.2 | 5.1 | [ |
| 石家庄LCO | — | 12.3 | 5.2 | 82.5 | 25.8 | 44.1 | 12.6 | [ |
| 高桥LCO | — | 17.1 | 10.6 | 72.3 | 20.3 | 41.9 | 10.1 | [ |
| 齐鲁LCO | — | 7.0 | 3.1 | 89.9 | 29.0 | 52.0 | 8.9 | [ |
| Repsol YPF LCO | 27 | 18.9 | 14.3 | 66.8 | — | 28.3 | 16.4 | [ |
| Abu Dhabi LCO | — | — | — | 89.7 | 27.6 | 59.5 | 2.6 | [ |
| 原料 | 催化剂 | 反应条件 | BTX(选择性,质量分数/%) | 文献 |
|---|---|---|---|---|
| 萘 | Ni2P/Beta | 温度400℃,压力3MPa,LHSV=3h-1,H2/Oil=2000 | BTX(94.4) | [ |
| Ni(2)Mo(13.2)/γ-Al2O3+Beta(20) | 温度400℃,压力4MPa,WHSV=1h-1,反应时间4h | BTX(62.8) | [ | |
| 5% Zn/HBeta | 温度400℃,压力4MPa,H2/CH4=1∶4,反应时间1h | BTEX(约78) | [ | |
| NiSn/HBeta | 温度425℃,压力4MPa,H2/Oil(mol/mol)=8,WHSV=2h-1 | BTX(40.1) | [ | |
| 1-甲基萘 | CoMoP/Beta-N、CoMoP/Beta-M(50) | 温度400℃,压力3MPa,WHSV=1.2h-1,反应时间20h | BTEX(36.7、58.0) | [ |
| NiMo/Beta(940)35A | 温度360℃,压力5MPa,WHSV=28h-1,反应时间0.25h | BTX(0.45) | [ | |
| 25W/Beta | 温度420℃,压力6MPa,H2/Oil(mol/mol)=30,WHSV=0.6h-1 | BTX(53) | [ | |
| 5 W(l)/Beta-0.15 | 温度420℃,压力6MPa,H2/Oil(mol/mol)=30,WHSV=0.4h-1 | BTX(56) | [ | |
| 四氢萘 | NiW/USY | 温度350℃,压力6.1MPa,反应时间1h | BTX(约20) | [ |
| Pt/USY | 温度260℃,压力4MPa,H2/Oil=500,LHSV=2h-1 | BTX(24.4) | [ | |
| Y-1、Y-2、Y-3、Y-4和Y-5 | 温度400℃,压力4MPa,H2/Oil=26.3,WHSV=1.3h-1 | BTX(约12、28、22、20和19) | [ | |
| 菲 | 10% Ni-L/HY | — | BTX(75.6) | [ |
| NiMo/HY | 温度330℃,压力5MPa,H2/Oil=30,LHSV=2h-1 | BTEX(约8) | [ | |
| NiW/Meso-HY(2) | 温度375℃,压力10.1MPa,反应时间500h | BTEX(6.1) | [ |
| 原料 | 催化剂 | 反应条件 | BTX(选择性,质量分数/%) | 文献 |
|---|---|---|---|---|
| 萘 | Ni2P/Beta | 温度400℃,压力3MPa,LHSV=3h-1,H2/Oil=2000 | BTX(94.4) | [ |
| Ni(2)Mo(13.2)/γ-Al2O3+Beta(20) | 温度400℃,压力4MPa,WHSV=1h-1,反应时间4h | BTX(62.8) | [ | |
| 5% Zn/HBeta | 温度400℃,压力4MPa,H2/CH4=1∶4,反应时间1h | BTEX(约78) | [ | |
| NiSn/HBeta | 温度425℃,压力4MPa,H2/Oil(mol/mol)=8,WHSV=2h-1 | BTX(40.1) | [ | |
| 1-甲基萘 | CoMoP/Beta-N、CoMoP/Beta-M(50) | 温度400℃,压力3MPa,WHSV=1.2h-1,反应时间20h | BTEX(36.7、58.0) | [ |
| NiMo/Beta(940)35A | 温度360℃,压力5MPa,WHSV=28h-1,反应时间0.25h | BTX(0.45) | [ | |
| 25W/Beta | 温度420℃,压力6MPa,H2/Oil(mol/mol)=30,WHSV=0.6h-1 | BTX(53) | [ | |
| 5 W(l)/Beta-0.15 | 温度420℃,压力6MPa,H2/Oil(mol/mol)=30,WHSV=0.4h-1 | BTX(56) | [ | |
| 四氢萘 | NiW/USY | 温度350℃,压力6.1MPa,反应时间1h | BTX(约20) | [ |
| Pt/USY | 温度260℃,压力4MPa,H2/Oil=500,LHSV=2h-1 | BTX(24.4) | [ | |
| Y-1、Y-2、Y-3、Y-4和Y-5 | 温度400℃,压力4MPa,H2/Oil=26.3,WHSV=1.3h-1 | BTX(约12、28、22、20和19) | [ | |
| 菲 | 10% Ni-L/HY | — | BTX(75.6) | [ |
| NiMo/HY | 温度330℃,压力5MPa,H2/Oil=30,LHSV=2h-1 | BTEX(约8) | [ | |
| NiW/Meso-HY(2) | 温度375℃,压力10.1MPa,反应时间500h | BTEX(6.1) | [ |
| 载体 | 拓扑结构 | 孔道尺寸 | 改性方式 | 文献 |
|---|---|---|---|---|
| Y | FAU(十二元环) | 0.74nm×0.74nm | 硬模板法(CNT和NCC),后处理法 | [ |
| ZSM-5 | MFI(十元环) | 0.55nm×0.51nm | 硬模板法(碳材料)和软模板法(CTAB),后处理法 | [ |
| Beta | BEA(十二元环) | 0.66nm×0.67nm | 软模板法(CTAB、PHAPTMS),后处理法 | [ |
| SBA-15 | — | — | Al改性 | [ |
| MCM-41 | — | — | Al改性 | [ |
| ZrO2、TiO2 | — | — | 单独或与SiO2联用 | [ |
| Al2O3 | — | — | 与β、Y、USY、ZSM-5复合 | [ |
| ASA | — | — | 与USY、β复合 | [ |
| 载体 | 拓扑结构 | 孔道尺寸 | 改性方式 | 文献 |
|---|---|---|---|---|
| Y | FAU(十二元环) | 0.74nm×0.74nm | 硬模板法(CNT和NCC),后处理法 | [ |
| ZSM-5 | MFI(十元环) | 0.55nm×0.51nm | 硬模板法(碳材料)和软模板法(CTAB),后处理法 | [ |
| Beta | BEA(十二元环) | 0.66nm×0.67nm | 软模板法(CTAB、PHAPTMS),后处理法 | [ |
| SBA-15 | — | — | Al改性 | [ |
| MCM-41 | — | — | Al改性 | [ |
| ZrO2、TiO2 | — | — | 单独或与SiO2联用 | [ |
| Al2O3 | — | — | 与β、Y、USY、ZSM-5复合 | [ |
| ASA | — | — | 与USY、β复合 | [ |
| [1] | CHOI Sun, Seung Hoon OH, KIM Yong Seung, et al. APUSM technology for the production of BTX and LPG from pyrolysis gasoline using metal promoted zeolite catalyst[J]. Catalysis Surveys from Asia, 2006, 10(2): 110-116. |
| [2] | 徐洁, 吴韬, 陈胜利, 等. 催化柴油加氢裂化生产BTX研究现状[J]. 工业催化, 2018, 26(2): 15-22. |
| XU Jie, WU Tao, CHEN Shengli, et al. Research progress of hydrocracking of diesel to produce BTX[J]. Industrial Catalysis, 2018, 26(2): 15-22. | |
| [3] | 羡策, 毛以朝, 龙湘云, 等. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140. |
| XIAN Ce, MAO Yichao, LONG Xiangyun, et al. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140. | |
| [4] | PENG Chong, LIU Bin, FENG Xiang, et al. Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil[J]. Chemical Engineering Journal, 2020, 389: 123461. |
| [5] | 鲁旭, 赵秦峰, 兰玲. 催化裂化轻循环油(LCO)加氢处理多产高辛烷值汽油技术研究进展[J]. 化工进展, 2017, 36(1): 114-120. |
| LU Xu, ZHAO Qinfeng, LAN Ling. Research progress on producing more high octane gasoline through hydrogenation from FCC light cycle oil(LCO)[J]. Chemical Industry and Engineering Progree, 2017, 36(1): 114-120. | |
| [6] | Alazne GUTIÉRREZ, ARANDES José M., Pedro CASTAÑO, et al. Preliminary studies on fuel production through LCO hydrocracking on noble-metal supported catalysts[J]. Fuel, 2012, 94: 504-515. |
| [7] | CHANDAK Nilesh, GEORGE Abraham, HAMADI Adel, et al. Impact of processing different blends of heavy gas oil and light cycle oil in a mild hydrocracker unit[J]. Catalysis Today, 2019, 329: 116-124. |
| [8] | 宋国良, 肖寒, 张海明, 等. Y和Beta分子筛复配对柴油加氢裂化催化剂性能的影响[J]. 工业催化, 2023, 31(3): 55-61. |
| SONG Guoliang, XIAO Han, ZHANG Haiming, et al. Effect of coupled beta and Y molecular sieves on performance of diesel hydrocracking catalysts[J]. Industrial Catalysis, , 2023, 31(3): 55-61. | |
| [9] | 任金晨, 柳伟, 袁长富, 等. 催化柴油加氢裂化生产汽油和BTX技术相关专利分析炼油[J]. 当代石油石化, 2018, 26(5): 28-32. |
| REN Jinchen, LIU Wei, YUAN Changfu, et al. Analysis on patents of technology hydrocracking LCO into gasoline and BTX[J]. Petroleum & Petrochemical Today, 2018, 26(5): 28-32. | |
| [10] | CHEN Feng, ZHANG Guohao, WENG Xiaoyi, et al. High value utilization of inferior diesel for BTX production: Mechanisms, catalysts, conditions and challenges[J]. Applied Catalysis A: General, 2021, 616: 118095. |
| [11] | BEUTHER Harold, LARSON O. A. Role of catalytic metals in hydrocracking[J]. Industrial & Engineering Chemistry Process Design and Development, 1965, 4(2): 177-181. |
| [12] | KIM Yong-Su, YUN Gwang-Nam, LEE Yong-Kul. Novel Ni2P/zeolite catalysts for naphthalene hydrocracking to BTX[J]. Catalysis Communications, 2014, 45: 133-138. |
| [13] | YU Feng, ZHANG Chuanhao, GENG Ruyi, et al. Hydrocracking of naphthalene over beta zeolite coupled with NiMo/γ-Al2O3: Investigation of metal and acid balance based on the composition of industrial hydrocracking catalyst[J]. Fuel, 2023, 344: 128049. |
| [14] | SHEN Zhibing, HE Peng, WANG Aiguo, et al. Conversion of naphthalene as model compound of polyaromatics to mono-aromatic hydrocarbons under the mixed hydrogen and methane atmosphere[J]. Fuel, 2019, 243: 469-477. |
| [15] | Jinho OH, CHOI Yesuel, SHIN Jaeuk, et al. Synergistic shape selectivity of H-beta and H-ZSM-5 for xylene-rich BTX production by hydrocracking of heavy-aromatic compounds[J]. Fuel Processing Technology, 2023, 249: 107856. |
| [16] | ZHANG Ke, OSTRAAT Michele, SUN Miao, et al. Mesoporous zeolites supported catalysts for selective ring opening of 1-methylnaphthalene with remarkably enhanced BTEX yield[C]//Proceedings of the 23rd World Petroleum Congress, 2021. |
| [17] | ISHIHARA Atsushi, ITOH Tomohiro, NASU Hiroyuki, et al. Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts[J]. Fuel Processing Technology, 2013, 116: 222-227. |
| [18] | WU Tao, CHEN Shengli, YUAN Guimei, et al. High-selective-hydrogenation activity of W/beta catalyst in hydrocracking of 1-methylnaphalene to benzene, toluene and xylene[J]. Fuel, 2018, 234: 1015-1025. |
| [19] | WU Tao, CHEN Shengli, YUAN Guimei, et al. High metal-acid balance and selective hydrogenation activity catalysts for hydrocracking of 1-methylnaphthalene to benzene, toluene, and xylene[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5546-5556. |
| [20] | SATO Koichi, IWATA Yoshiki, MIKI Yasuo, et al. Hydrocracking of tetralin over NiW/USY zeolite catalysts: for the improvement of heavy-oil upgrading catalysts[J]. Journal of Catalysis, 1999, 186(1): 45-56. |
| [21] | WANG Qi, HOU Zhanggui, ZHANG Bo, et al. Preparation of a highly efficient Pt/USY catalyst for hydrogenation and selective ring-opening reaction of tetralin[J]. Petroleum Science, 2018, 15(3): 605-612. |
| [22] | QI Jiayao, GUO Yanni, JIA Hanqiong, et al. Unpredictable properties of industrial HY zeolite for tetralin hydrocracking[J]. Fuel Processing Technology, 2023, 240: 107586. |
| [23] | FANG Ting, XIE Yangli, LI Lirong, et al. High-efficiency hydrocracking of phenanthrene into BTX aromatics over a Ni-modified lamellar-crystal HY zeolite[J]. Physical Chemistry Chemical Physics, 2022, 24(15): 8624-8630. |
| [24] | PENG Chong, LIU Peng, ZHOU Zhiming, et al. Detailed understanding on thermodynamic and kinetic features of phenanthrene hydroprocessing on Ni-Mo/HY catalyst[J]. AIChE Journal, 2022, 68(11): e17831. |
| [25] | LEE Su-Un, LEE You-Jin, KIM Jeong-Rang, et al. Selective ring opening of phenanthrene over NiW-supported mesoporous HY zeolite catalyst depending on their mesoporosity[J]. Materials Research Bulletin, 2017, 96: 149-154. |
| [26] | ALI M A, TATSUMI T, MASUDA T. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports[J]. Applied Catalysis A: General, 2002, 233(1/2): 77-90. |
| [27] | VERBOEKEND Danny, Gianvito VILÉ, Javier PÉREZ-RAMÍREZ. Hierarchical Y and USY zeolites designed by post-synthetic strategies[J]. Advanced Functional Materials, 2012, 22(5): 916-928. |
| [28] | QIN Zhengxing, SHEN Wen, ZHOU Shuge, et al. Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter[J]. Microporous and Mesoporous Materials, 2020, 303: 110248. |
| [29] | DE JONG Krijn P, Jovana ZEČEVIĆ, FRIEDRICH Heiner, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie International Edition, 2010, 49(52): 10074-10078. |
| [30] | 程俊杰. 萘加氢裂化制BTX催化剂性能的研究[D]. 北京: 中国科学院大学, 2017. |
| CHENG Junjie. Research on the catalytic performance for naphthalene hydrocracking of BTX catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
| [31] | ABDULRIDHA Samer, JIANG Jiuxing, XU Shaojun, et al. Cellulose nanocrystals (CNCs) as hard templates for preparing mesoporous zeolite Y assemblies with high catalytic activity[J]. Green Chemistry, 2020, 22(15): 5115-5122. |
| [32] | THYBAUT Joris W, LAXMI NARASIMHAN C S, DENAYER Joeri F, et al. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5159-5169. |
| [33] | LAREDO Georgina C, GARCÍA-GUTIÉRREZ José L, Patricia PéREZ-ROMO, et al. Effect of the catalyst in the BTX production by hydrocracking of light cycle oil[J]. Applied Petrochemical Research, 2021, 11: 19-38. |
| [34] | ARDAKANI Shahrzad Jooya, SMITH Kevin J. A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts[J]. Applied Catalysis A: General, 2011, 403(1): 36-47. |
| [35] | SAMOILA P, EPRON F, MARéCOT P, et al. Influence of chlorine on the catalytic properties of supported rhodium, iridium and platinum in ring opening of naphthenes[J]. Applied Catalysis A: General, 2013, 462: 207-219. |
| [36] | JACQUIN Mélanie, JONES Deborah J, Jacques ROZIÈRE, et al. Novel supported Rh, Pt, Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene[J]. Applied Catalysis A: General, 2003, 251(1): 131-141. |
| [37] | MENG Lingqian, VANBUTSELE Gina, PESTMAN Robert, et al. Mechanistic aspects of n-paraffins hydrocracking: Influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts[J]. Journal of Catalysis, 2020, 389: 544-555. |
| [38] | ELANGOVAN S P, BISCHOF Christian, HARTMANN Martin. Isomerization and hydrocracking of n-decane over bimetallic Pt-Pd clusters supported on mesoporous MCM-41 catalysts[J]. Catalysis Letters, 2002, 80(1): 35-40. |
| [39] | ZHU Lihua, SHAN Shiyao, PETKOV Valeri, et al. Ruthenium-nickel-nickel hydroxide nanoparticles for room temperature catalytic hydrogenation[J]. Journal of Materials Chemistry A, 2017, 5(17): 7869-7875. |
| [40] | JARVIS Jack, HE Peng, WANG Aiguo, et al. Pt-Zn/HZSM-5 as a highly selective catalyst for the co-aromatization of methane and light straight run naphtha[J]. Fuel, 2019, 236: 1301-1310. |
| [41] | LIU Dapeng, CHEO Wei Ni Evelyn, Yi Wen Yvonne LIM, et al. A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide[J]. Catalysis Today, 2010, 154(3): 229-236. |
| [42] | WU Naijin, LI Baoshan. A novel synthesis of highly dispersed bimetallic catalysts Pt@M-MCM-41 (M=Ni, Co) for hydrocracking of residual oil[J]. Chemistry Letters, 2016, 45(5): 499-501. |
| [43] | CHOI Yeseul, LEE Jihye, SHIN Jaeuk, et al. Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons[J]. Applied Catalysis A: General, 2015, 492: 140-150. |
| [44] | LEE Jihye, CHOI Yeseul, SHIN Jaeuk, et al. Selective hydrocracking of tetralin for light aromatic hydrocarbons[J]. Catalysis Today, 2016, 265: 144-153. |
| [45] | UPARE Dipali P, PARK S, KIM M S, et al. Selective hydrocracking of pyrolysis fuel oil into benzene, toluene and xylene over CoMo/beta zeolite catalyst[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 356-363. |
| [46] | MENG Xiaotong, Yuchao LYU, LIU Junhao, et al. Resurrection of the spent NiMo/Al2O3 catalyst for diesel hydrofining[J]. Catalysis Today, 2022, 405: 14-22. |
| [47] | SHIN Jaeuk, Youngseok OH, CHOI Yeseul, et al. Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons[J]. Applied Catalysis A: General, 2017, 547: 12-21. |
| [48] | KUCHINSKAYA Tatiana, KNIAZEVA Marila, SAMOILOV Vadim, et al. In situ generated nanosized sulfide Ni-W catalysts based on zeolite for the hydrocracking of the pyrolysis fuel oil into the BTX fraction[J]. Catalysts, 2020, 10(10): 1152. |
| [49] | YUN Guoxia, GUAN Qingxin, LI Wei. The synthesis and mechanistic studies of a highly active nickel phosphide catalyst for naphthalene hydrodearomatization[J]. RSC Advances, 2017, 7(14): 8677-8687. |
| [50] | GENG Yanyan, LANG Man, LI Guotai, et al. Hydrodeoxygenation of vanillin over Ni2P/zeolite catalysts: role of surface acid density[J]. Catalysis Letters, 2023, 153(3): 911-920. |
| [51] | ARDAKANI Shahrzad Jooya, LIU Xuebin, SMITH Kevin J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts[J]. Applied Catalysis A: General, 2007, 324: 9-19. |
| [52] | LIU Xuebin, ARDAKANI Shahrzad Jooya, SMITH Kevin J. The effect of Mg and K addition to a Mo2C/HY catalyst for the hydrogenation and ring opening of naphthalene[J]. Catalysis Communications, 2011, 12(6): 454-458. |
| [53] | Chandra MOULI K, SUNDARAMURTHY V, DALAI A K. A comparison between ring-opening of decalin on Ir-Pt and Ni-Mo carbide catalysts supported on zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2009, 304(1): 77-84. |
| [54] | HASANUDIN Hasanudin, ASRI Wan Ryan, SAID Muhammad, et al. Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst[J]. RSC Advances, 2022, 12(26): 16431-16443. |
| [55] | HASANUDIN Hasanudin, ASRI Wan Ryan, ZULAIKHA Indah Sari, et al. Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite[J]. RSC Advances, 2022, 12(34): 21916-21925. |
| [56] | 林俊明, 岑洁, 李正甲, 等. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
| LIN Junming, CEN Jie, LI Zhengjia, et al. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209. | |
| [57] | ONISHCHENKO M I, MAKSIMOV A L. Activity of supported and in situ synthesized beta zeolite catalysts in the hydrocracking of vacuum gas oil[J]. Petroleum Chemistry, 2018, 58(8): 651-658. |
| [58] | ARANDIA Aitor, REMIRO Aingeru, Verónica GARCÍA, et al. Oxidative steam reforming of raw bio-oil over supported and bulk Ni catalysts for hydrogen production[J]. Catalysts, 2018, 8(8): 322. |
| [59] | JEONG Gwangsik, KIM Chan Hun, Young Gul HUR, et al. Ni-doped MoS2 nanoparticles prepared via core-shell nanoclusters and catalytic activity for upgrading heavy oil[J]. Energy & Fuels, 2018, 32(9): 9263-9270. |
| [60] | KIM Chan Hun, Young Gul HUR, LEE Kwan-Young. Relationship between surface characteristics and catalytic properties of unsupported nickel-tungsten carbide catalysts for the hydrocracking of vacuum residue[J]. Fuel, 2022, 309: 122103. |
| [61] | FRANCIS J, GUILLON E, BATS N, et al. Design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites[J]. Applied Catalysis A: General, 2011, 409: 140-147. |
| [62] | HU Zunlong, HU Peng, WANG Xiulin, et al. Selective hydrocracking of 1-methylnaphthalene to benzene/toluene/xylenes (BTX) over NiW/beta bifunctional catalyst: Effects of metal-acid balance[J]. Fuel, 2024, 363: 130947. |
| [63] | CAO Zhengkai, CHEN Zhentao, YU Jiahuan, et al. Supported CoW bifunctional catalyst with high activity and selectivity for hydrocracking alkane[J]. Chemical Engineering Science, 2023, 282: 119292. |
| [64] | ZHAO Wenli, LIU Linlin, NIU Xiaopo, et al. Reaction pathways control of long-chain alkanes hydroisomerization and hydrocracking via tailoring the metal-acid sites intimacy[J]. Fuel, 2023, 349: 128703. |
| [65] | MONTEIRO Carlos A A, COSTA Denise, ZOTIN José L, et al. Effect of metal-acid site balance on hydroconversion of decalin over Pt/beta zeolite bifunctional catalysts[J]. Fuel, 2015, 160: 71-79. |
| [66] | ABDULRIDHA Samer, JIAO Yilai, XU Shaojun, et al. A comparative study on mesoporous Y zeolites prepared by hard-templating and post-synthetic treatment methods[J]. Applied Catalysis A: General, 2021, 612: 117986. |
| [67] | WEI Linjiao, PENG Peng, QIAO Ke, et al. Hierarchical Y zeolite with accessible intracrystalline mesopores and enhanced hydrocracking performances via sequential multi-carboxyl acid and fluoroborate post-treatments[J]. Fuel, 2023, 354: 129289. |
| [68] | AGHAEI Erfan, KARIMZADEH Ramin, GODINI Hamid Reza, et al. Improving the physicochemical properties of Y zeolite for catalytic cracking of heavy oil via sequential steam-alkali-acid treatments[J]. Microporous and Mesoporous Materials, 2020, 294: 109854. |
| [69] | IMYEN Thidarat, WANNAPAKDEE Wannaruedee, LIMTRAKUL Jumras, et al. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes[J]. Fuel, 2019, 254: 115593. |
| [70] | ZHANG Weimin, QIN Bo, LI Wenxi, et al. Practical application of hierarchical beta zeolite in a vacuum gas oil hydrocracking catalyst[J]. Chemical Engineering & Technology, 2020, 43(11): 2224-2232. |
| [71] | YANG Xiaosong, LIU Jing, FAN Kai, et al. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 catalyst[J]. Scientific Reports, 2017, 7(1): 41654. |
| [72] | ZHANG Ke, FERNANDEZ Sergio, CONVERSE Elisha S, et al. Exploring the impact of synthetic strategies on catalytic cracking in hierarchical beta zeolites via hydrothermal desilication and organosilane-templated synthesis[J]. Catalysis Science & Technology, 2020, 10(14): 4602-4611. |
| [73] | MORGADO PRATES Ana Rita, CHETOT Titouan, BUREL Laurence, et al. Hollow structures by controlled desilication of beta zeolite nanocrystals[J]. Journal of Solid State Chemistry, 2020, 281: 121033. |
| [74] | ZHANG Xuejun, ZHANG Fuqiang, YAN Xuewu, et al. Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports[J]. Journal of Porous Materials, 2008, 15: 145-150. |
| [75] | RESTREPO-GARCIA Jonatan R, BALDOVINO-MEDRANO Víctor G, GIRALDO Sonia A. Improving the selectivity in hydrocracking of phenanthrene over mesoporous Al-SBA-15 based Fe-W catalysts by enhancing mesoporosity and acidity[J]. Applied Catalysis A: General, 2016, 510: 98-109. |
| [76] | YANG Hong, FAIRBRIDGE Craig, HILL Josephine, et al. Comparison of hydrogenation and mild hydrocracking activities of Pt-supported catalysts[J]. Catalysis Today, 2004, 93: 457-465. |
| [77] | MADHUSUDAN REDDY Kondam, SONG Chunshan. Synthesis and catalytic applications of novel mesoporous aluminosilicate molecular sieves[J]. MRS Online Proceedings Library (OPL), 1996, 454(1): 125-137. |
| [78] | RAAD Zaher, TOUFAILY Joumana, HAMIEH Tayssir, et al. TiO2-supported Pd as an efficient and stable catalyst for the mild hydrotreatment of tar-type compounds[J]. Nanomaterials, 2021, 11(9): 2380. |
| [79] | MA Yongde, WANG Yanru, WU Wenquan, et al. Slurry-phase hydrocracking of a decalin-phenanthrene mixture by MoS2/SiO2-ZrO2 bifunctional catalysts[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 230-242. |
| [80] | HASSAN Azfar, AHMED Shakeel, Mohammad Ashraf ALI, et al. A comparison between β-and USY-zeolite-based hydrocracking catalysts[J]. Applied Catalysis A: General, 2001, 220(1/2): 59-68. |
| [81] | HARTMANN Martin. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport[J]. Angewandte Chemie International Edition, 2004, 43(44): 5880-5882. |
| [82] | KIM Yong-Su, CHO Kye-Sung, LEE Yong-Kul. Morphology effect of β-zeolite supports for Ni2P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene[J]. Journal of Catalysis, 2017, 351: 67-78. |
| [83] | MUNNIK Peter, DE JONGH Petra E, DE JONG Krijn P. Recent developments in the synthesis of supported catalysts[J]. Chemical Reviews, 2015, 115(14): 6687-6718. |
| [84] | MEHRABADI Bahareh A T, ESKANDARI Sonia, KHAN Umema, et al. Chapter one — A Review of Preparation Methods for Supported Metal Catalysts[M]// Advances in Catalysis, 2017, 61: 1-35. |
| [85] | YANG Jiliang, LU Xinkang, HAN Cui, et al. Glycine-assisted preparation of highly dispersed Ni/SiO2 catalyst for low-temperature dry reforming of methane[J]. International Journal of Hydrogen Energy, 2022, 47(75): 32071-32080. |
| [86] | ZHANG Yunfei, ZHANG Guojie, LIU Jun, et al. Insight into the role of preparation method on the structure and size effect of Ni/MSS catalysts for dry reforming of methane[J]. Fuel Processing Technology, 2023, 250: 107891. |
| [87] | REN Huaping, DING Siyi, MA Qiang, et al. The effect of preparation method of Ni-supported SiO2 catalysts for carbon dioxide reforming of methane[J]. Catalysts, 2021, 11(10): 1221. |
| [88] | LIU Huimin, LI Yuming, WU Hao, et al. Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane[J]. Chinese Journal of Catalysis, 2015, 36(3): 283-289. |
| [89] | SAAB Roba, POLYCHRONOPOULOU Kyriaki, ZHENG Lianxi, et al. Synthesis and performance evaluation of hydrocracking catalysts: A review[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 83-103. |
| [90] | MILLER Jeffrey T, SCHREIER Marc, Jeremy KROPF A, et al. A fundamental study of platinum tetraammine impregnation of silica: 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size[J]. Journal of Catalysis, 2004, 225(1): 203-212. |
| [91] | JIAO Ling, REGALBUTO John R. The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: Ⅰ. Amorphous silica[J]. Journal of Catalysis, 2008, 260(2): 329-341. |
| [92] | CAO Chongjiang, YANG Guang, DUBAU Laetitia, et al. Highly dispersed Pt/C catalysts prepared by the charge enhanced dry impregnation method[J]. Applied Catalysis B: Environmental, 2014, 150: 101-106. |
| [93] | VARGAS H, MORALES J C, BOKHIMI X, et al. Effect of the preparation method on the hydrogenation activity of Ni/SBA-15 catalysts: Comparison of EDTA complexation and DPU[J]. Catalysis Today, 2018, 305: 133-142. |
| [94] | WANG Ting, LIU Sibao, WANG Li, et al. High-performance Rh/CeO2 catalysts prepared by L-lysine-assisted deposition precipitation method for steam reforming of toluene[J]. Fuel, 2023, 341: 127736. |
| [95] | KESHAVARZ Ahmad Reza, SOLEIMANI Mansooreh. Optimization of nano-sized Ni/MgAl2O4 catalyst synthesis by the surfactant-assisted deposition precipitation method for steam pre-reforming of natural gas[J]. RSC Advances, 2016, 6(66): 61536-61543. |
| [96] | LAMME Wouter S, Jovana ZEČEVIĆ, DE JONG Krijn P. Influence of metal deposition and activation method on the structure and performance of carbon nanotube supported palladium catalysts[J]. ChemCatChem, 2018, 10(7): 1552-1555. |
| [97] | Xiao LYU, MA Yongbing, WANG Xiao, et al. A facile chemical reduction method for synthesis of platinum-iron catalysts on carbon fiber papers for methanol oxidation[J]. Journal of the Iranian Chemical Society, 2017, 14(11): 2387-2395. |
| [98] | CHAN Kwong-Yu, DING Jie, REN Jiawen, et al. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells[J]. Journal of Materials Chemistry, 2004, 14(4): 505-516. |
| [1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
| [2] | YANG Xin, ZHONG Chengwei, YANG Zhishan, ZHU Weiwei, WANG Wenhao, YU Jiang. Catalytic remediation of polycyclic aromatic hydrocarbons contaminated soil by synthetic siderite and its derivatives [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4118-4127. |
| [3] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
| [4] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
| [5] | YANG Jing, LI Bo, LI Wenjun, LIU Xiaona, TANG Liuyuan, LIU Yue, QIAN Tianwei. Degradation of naphthalene by degrading bacteria isolated from coking contaminated sites [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4351-4361. |
| [6] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
| [7] | LIU Baicheng, LI Fayun, ZHAO Qihui, LIN Meixia. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by Gramineae plants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3736-3748. |
| [8] | WU Luming, YU Haibin, ZANG Jiazhong, WANG Yaquan, LI Bin, SUN Zhenhai. Synthesis of hierarchically porous aluminosilicate nanospheres and their adsorption and separation of polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6452-6460. |
| [9] | KONG Qian, SUN Jinchao, GE Jiaqi, ZHANG Peng, MA Yanlong, LIU Baijun. Effect of precipitant on the hydrocracking performance of NiW/TiO2-ASA catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 265-271. |
| [10] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
| [11] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
| [12] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
| [13] | LYU Ying, HU Xuewu, CHEN Susu, LIU Xingyu, CHEN Bowei, ZHANG Mingjiang. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3249-3262. |
| [14] | HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. |
| [15] | LIU Chang, LIU Zhongwen. Perspective on the one-step CO2 hydrogenation to dimethyl ether [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1115-1120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |