Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2758-2766.DOI: 10.16085/j.issn.1000-6613.2024-1931
• Synthetic material utilization • Previous Articles
FU Donglong(
), FENG Guanqing, XU Xinquan, LU Zhenpu, PEI Chunlei, GONG Jinlong(
)
Received:2024-11-22
Revised:2024-12-27
Online:2025-05-20
Published:2025-05-25
Contact:
GONG Jinlong
付东龙(
), 冯冠晴, 徐心泉, 陆振谱, 裴春雷, 巩金龙(
)
通讯作者:
巩金龙
作者简介:付东龙(1990—),男,教授,博士生导师,研究方向为多相催化及原位表征。E-mail:dl_fu@tju.edu.cn。
CLC Number:
FU Donglong, FENG Guanqing, XU Xinquan, LU Zhenpu, PEI Chunlei, GONG Jinlong. Recent advances in catalytic conversion of waste plastics[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2758-2766.
付东龙, 冯冠晴, 徐心泉, 陆振谱, 裴春雷, 巩金龙. 塑料催化资源化利用研究进展[J]. 化工进展, 2025, 44(5): 2758-2766.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1931
| 1 | KOTS Pavel A, VANCE Brandon C, QUINN Caitlin M, et al. A two-stage strategy for upcycling chlorine-contaminated plastic waste[J]. Nature Sustainability, 2023, 6: 1258-1267. |
| 2 | NEELAVANNAN Kannaiyan, Indra Sekhar SEN, LONE Aasif Mohmad, et al. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya (India)[J]. Chemosphere, 2022, 290: 133354. |
| 3 | STUBBINS Aron, LAW Kara Lavender, MUÑOZ Samuel E, et al. Plastics in the Earth system[J]. Science, 2021, 373(6550): 51-55. |
| 4 | THUSHARI G G N, SENEVIRATHNA J D M. Plastic pollution in the marine environment[J]. Heliyon, 2020, 6(8): e04709. |
| 5 | JAMBECK Jenna R, GEYER Roland, WILCOX Chris, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. |
| 6 | HUFFMAN George L, KELLER Daniel J. The plastics issue[M]//GUILLET James, ed. Polymers and ecological problems. Boston, MA: Springer US, 1973: 155-167. |
| 7 | HAHLADAKIS John N, VELIS Costas A, WEBER Roland, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. |
| 8 | MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2): 318-324. |
| 9 | CABERNARD Livia, PFISTER Stephan, OBERSCHELP Christopher, et al. Growing environmental footprint of plastics driven by coal combustion[J]. Nature Sustainability, 2022, 5: 139-148. |
| 10 | L-A WALL, S-L MADORSKY, D-W BROWN, et al. The depolymerization of polymethylene and polyethylene[J]. Journal of the American Chemical Society, 1954, 76(13): 3430-3437. |
| 11 | SCHYNS Zoé O G, SHAVER Michael P. Mechanical recycling of packaging plastics: A review[J]. Macromolecular Rapid Communications, 2021, 42(3): e2000415. |
| 12 | ARIFUZZAMAN Md, SUMPTER Bobby G, DEMCHUK Zoriana, et al. Selective deconstruction of mixed plastics by a tailored organocatalyst[J]. Materials Horizons, 2023, 10(9): 3360-3368. |
| 13 | NIXON Kevin D, SCHYNS Zoé O G, LUO Yuqing, et al. Analyses of circular solutions for advanced plastics waste recycling[J]. Nature Chemical Engineering, 2024, 1: 615-626. |
| 14 | DERMOT O’SULLIVAN. German chemical giants join to recycle plastics[J]. Chemical & Engineering News Archive, 1990, 68(21): 8. |
| 15 | VOGT Bryan D, STOKES Kristoffer K, KUMAR Sanat K. Why is recycling of postconsumer plastics so challenging?[J]. ACS Applied Polymer Materials, 2021, 3(9): 4325-4346. |
| 16 | LI Houqian, AGUIRRE-VILLEGAS Horacio A, ALLEN Robert D, et al. Expanding plastics recycling technologies: Chemical aspects, technology status and challenges[J]. Green Chemistry, 2022, 24(23): 8899-9002. |
| 17 | HOPEWELL Jefferson, DVORAK Robert, KOSIOR Edward. Plastics recycling: Challenges and opportunities[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 2115-2126. |
| 18 | SUN Jiakai, DONG Jinhu, GAO Lijun, et al. Catalytic upcycling of polyolefins[J]. Chemical Reviews, 2024, 124(16): 9457-9579. |
| 19 | CORMA A, ORCHILLÉS A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35: 21-30. |
| 20 | DUAN Jindi, CHEN Wei, WANG Chengtao, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
| 21 | TAN JUN zhi, HULLFISH Cole W, ZHENG Yiteng, et al. Conversion of polyethylene waste to short chain hydrocarbons under mild temperature and hydrogen pressure with metal-free and metal-loaded MFI zeolites[J]. Applied Catalysis B: Environmental, 2023, 338: 123028. |
| 22 | COONRADT H L, GARWOOD W E. Mechanism of hydrocracking. reactions of paraffins and olefins[J]. Industrial & Engineering Chemistry Process Design and Development, 1964, 3(1): 38-45. |
| 23 | PYRA Kamila, TARACH Karolina A, Anna ŚRĘBOWATA, et al. Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel[J]. Applied Catalysis B: Environmental, 2020, 277: 119070. |
| 24 | ZHANG Fan, ZENG Manhao, YAPPERT Ryan D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
| 25 | DU Junjie, ZENG Lin, YAN Tao, et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons[J]. Nature Nanotechnology, 2023, 18(7): 772-779. |
| 26 | LU Shenglu, JING Yaxuan, FENG Bo, et al. H2-free plastic conversion: Converting PET back to BTX by unlocking hidden hydrogen[J]. ChemSusChem, 2021, 14(19): 4242-4250. |
| 27 | LIU Jieyi, WEI Junde, FENG Xiao, et al. Ni/HZSM-5 catalysts for hydrodeoxygenation of polycarbonate plastic wastes into cycloalkanes for sustainable aviation fuels[J]. Applied Catalysis B: Environmental, 2023, 338: 123050. |
| 28 | LEE Wei-Tse, VAN MUYDEN Antoine, BOBBINK Felix D, et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts[J]. Nature Communications, 2022, 13(1): 4850. |
| 29 | CHEN Ruizhe, CHENG Leilei, GU Jing, et al. Mechanistic understanding of metal-acid synergetic hydroconversion of polyethylene under mild conditions over a Ru/MOR catalyst[J]. Energy Conversion and Management, 2024, 300: 117983. |
| 30 | SUN Jiakai, LEE Yu-Hsuan, YAPPERT Ryan D, et al. Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics[J]. Chem, 2023, 9(8): 2318-2336. |
| 31 | LIU Sibao, KOTS Pavel A, VANCE Brandon C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
| 32 | VANCE Brandon C, KOTS Pavel A, WANG Cong, et al. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia[J]. Applied Catalysis B: Environmental, 2021, 299: 120483. |
| 33 | WU Xueting, WANG Xiao, ZHANG Lingling, et al. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters[J]. Angewandte Chemie International Edition, 2024, 63(8): e202317594. |
| 34 | LI Lin, LUO Hu, SHAO Zilong, et al. Converting plastic wastes to naphtha for closing the plastic loop[J]. Journal of the American Chemical Society, 2023, 145(3): 1847-1854. |
| 35 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
| 36 | WU Chunfei, WILLIAMS Paul T. Pyrolysis-gasification of post-consumer municipal solid plastic waste for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 949-957. |
| 37 | WU Chunfei, WILLIAMS Paul T. Effects of gasification temperature and catalyst ratio on hydrogen production from catalytic steam pyrolysis-gasification of polypropylene[J]. Energy & Fuels, 2008, 22(6): 4125-4132. |
| 38 | ELBABA Ibrahim F, WILLIAMS Paul T. Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production[J]. Energy & Fuels, 2014, 28(3): 2104-2113. |
| 39 | NISHINO Junya, ITOH Masaaki, FUJIYOSHI Hironobu, et al. Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5[J]. Fuel, 2008, 87(17/18): 3681-3686. |
| 40 | RATNASARI Devy K, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
| 41 | ZHANG Zedong, WANG Jia, GE Xiaohu, et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst[J]. Journal of the American Chemical Society, 2023, 145(41): 22836-22844. |
| 42 | ONWUDILI Jude A, MUHAMMAD Chika, WILLIAMS Paul T. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals[J]. Journal of the Energy Institute, 2019, 92(5): 1337-1347. |
| 43 | SULLIVAN Kevin P, WERNER Allison Z, RAMIREZ Kelsey J, et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J]. Science, 2022, 378(6616): 207-211. |
| 44 | TISO Till, NARANCIC Tanja, WEI Ren, et al. Towards bio-upcycling of polyethylene terephthalate[J]. Metabolic Engineering, 2021, 66: 167-178. |
| 45 | ZHOU Xiaoli, WU Biao, QIAN Xiujuan, et al. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111016. |
| 46 | XU Zhen, PAN Fuping, SUN Mengqi, et al. Cascade degradation and upcycling of polystyrene waste to high-value chemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2203346119. |
| 47 | MUNYANEZA Nuwayo Eric, POSADA Carlos, XU Zhen, et al. A generic platform for upcycling polystyrene to aryl ketones and organosulfur compounds[J]. Angewandte Chemie International Edition, 2023, 62(36): e202307042. |
| 48 | HAN Xinlei, ZHOU Xinru, JI Tuo, et al. Boosting the catalytic performance of metal-zeolite catalysts in the hydrocracking of polyolefin wastes by optimizing the nanoscale proximity[J]. EES Catalysis, 2024, 2(1): 300-310. |
| 49 | RUBIO ARIAS Jose Jonathan, THIELEMANS Wim. Instantaneous hydrolysis of PET bottles: An efficient pathway for the chemical recycling of condensation polymers[J]. Green Chemistry, 2021, 23(24): 9945-9956. |
| 50 | CAMPANELLI John R, KAMAL M R, COOPER D G. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures[J]. Journal of Applied Polymer Science, 1993, 48(3): 443-451. |
| 51 | ZENG Wei, ZHAO Yanfei, ZHANG Fengtao, et al. A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons[J]. Nature Communications, 2024, 15(1): 160. |
| 52 | ZUNITA Megawati, WINOTO Haryo Pandu, M Fikar Kamil FAUZAN, et al. Recent advances in plastics waste degradation using ionic liquid-based process[J]. Polymer Degradation and Stability, 2023, 211: 110320. |
| 53 | ZHANG Wei, KIM Sungmin, WAHL Lennart, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation[J]. Science, 2023, 379(6634): 807-811. |
| 54 | SMITH Emma L, ABBOTT Andrew P, RYDER Karl S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. |
| 55 | ZHOU Lei, LU Xingmei, JU Zhaoyang, et al. Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts[J]. Green Chemistry, 2019, 21(4): 897-906. |
| 56 | MITTAL Alok, SONI R K, DUTT Krishna, et al. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 390-396. |
| 57 | GOLDMAN Alan S, ROY Amy H, HUANG Zheng, et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis[J]. Science, 2006, 312(5771): 257-261. |
| 58 | JIA Xiangqing, QIN Chuan, FRIEDBERGER Tobias, et al. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions[J]. Science Advances, 2016, 2(6): e1501591. |
| 59 | ELLIS Lucas D, ORSKI Sara V, KENLAW Grace A, et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 623-628. |
| 60 | GUIRONNET Damien, PETERS Baron. Tandem catalysts for polyethylene upcycling: A simple kinetic model[J]. The Journal of Physical Chemistry A, 2020, 124(19): 3935-3942. |
| 61 | WANG Nicholas M, STRONG Garrett, DASILVA Vanessa, et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene[J]. Journal of the American Chemical Society, 2022, 144(40): 18526-18531. |
| 62 | CONK Richard J, HANNA Steven, SHI Jake X, et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene[J]. Science, 2022, 377(6614): 1561-1566. |
| 63 | ARROYAVE Alejandra, CUI Shilin, LOPEZ Jaqueline C, et al. Catalytic chemical recycling of post-consumer polyethylene[J]. Journal of the American Chemical Society, 2022, 144(51): 23280-23285. |
| 64 | ZENG Manhao, LEE Yu-Hsuan, STRONG Garrett, et al. Chemical upcycling of polyethylene to value-added α, ω-divinyl-functionalized oligomers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13926-13936. |
| 65 | ASHRAF Muhammad, ULLAH Nisar, KHAN Ibrahim, et al. Photoreforming of waste polymers for sustainable hydrogen fuel and chemicals feedstock: Waste to energy[J]. Chemical Reviews, 2023, 123(8): 4443-4509. |
| 66 | BHATTACHARJEE Subhajit, LINLEY Stuart, REISNER Erwin. Solar reforming as an emerging technology for circular chemical industries[J]. Nature Reviews Chemistry, 2024, 8(2): 87-105. |
| 67 | ZHAO Zhiyong, YUE Shuai, YANG Gaohua, et al. A unified view of carbon neutrality: Solar-driven selective upcycling of waste plastics[J]. Transactions of Tianjin University, 2024, 30(1): 1-26. |
| 68 | KAWAI Tomoji, SAKATA Tadayoshi. Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement[J]. Chemistry Letters, 1981, 10(1): 81-84. |
| 69 | UEKERT Taylor, KUEHNEL Moritz F, WAKERLEY David W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857. |
| 70 | DU Mengeng, ZHANG Yu, KANG Sailei, et al. Trash to Treasure: Photoreforming of Plastic Waste into Commodity Chemicals and Hydrogen over MoS2-Tipped CdS Nanorods[J]. ACS Catalysis, 2022, 12(20): 12823-12832. |
| 71 | ZHANG Shuai, LI Haobo, WANG Lei, et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets[J]. Journal of the American Chemical Society, 2023, 145(11): 6410-6419. |
| 72 | JIAO Xingchen, ZHENG Kai, CHEN Qingxia, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions[J]. Angewandte Chemie International Edition, 2020, 59(36): 15497-15501. |
| 73 | MIAO Yingxuan, ZHAO Yunxuan, GAO Junyu, et al. Direct photoreforming of real-world polylactic acid plastics into highly selective value-added pyruvic acid under visible light[J]. Journal of the American Chemical Society, 2024, 146(7): 4842-4850. |
| 74 | CAO Ruochen, ZHANG Meiqi, HU Chaoquan, et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst[J]. Nature Communications, 2022, 13(1): 4809. |
| 75 | UEKERT Taylor, KASAP Hatice, REISNER Erwin. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J]. Journal of the American Chemical Society, 2019, 141(38): 15201-15210. |
| 76 | UEKERT Taylor, DORCHIES Florian, PICHLER Christian M, et al. Photoreforming of food waste into value-added products over visible-light-absorbing catalysts[J]. Green Chemistry, 2020, 22(10): 3262-3271. |
| 77 | UEKERT Taylor, BAJADA Mark A, SCHUBERT Teresa, et al. Scalable photocatalyst panels for photoreforming of plastic, biomass and mixed waste in flow[J]. ChemSusChem, 2021, 14(19): 4190-4197. |
| 78 | ZHOU Hua, REN Yue, LI Zhenhua, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
| 79 | WANG Yuxiang, LIU Kesheng, LIU Fulai, et al. Selective electro-reforming of waste polyethylene terephthalate-derived ethylene glycol into C2 chemicals with long-term stability[J]. Green Chemistry, 2023, 25(15): 5872-5877. |
| 80 | DU Mengmeng, ZHANG Yu, KANG Sailei, et al. Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno-economics[J]. Small, 2023, 19(39): e2303693. |
| 81 | ZHANG Bowen, ZHANG Huiyan, PAN Yuyang, et al. Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production[J]. Chemical Engineering Journal, 2023, 462: 142247. |
| 82 | LI Xin, WANG Jianying, ZHANG Ting, et al. Photoelectrochemical catalysis of waste polyethylene terephthalate plastic to coproduce formic acid and hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9546-9552. |
| 83 | MA Fahao, LI Zaiqi, HU Riming, et al. Electrocatalytic waste-treating-waste strategy for concurrently upgrading of polyethylene terephthalate plastic and CO2 into value-added formic acid[J]. ACS Catalysis, 2023, 13(21): 14163-14172. |
| 84 | KIM Jinhyun, JANG Jinha, HILBERATH Thomas, et al. Photoelectrocatalytic biosynthesis fuelled by microplastics[J]. Nature Synthesis, 2022, 1: 776-786. |
| [1] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [2] | WANG Jia, SUN Danhui, QIAO Yifan, FAN Xiufang, ZHAO Lidong, HE Lei, LU Anhui. Catalytic conversion of ethanol to high value-added chemicals [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2587-2597. |
| [3] | LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641. |
| [4] | XU Zhenhao, YI Zixiao, ZENG Chen, WANG Yuchen, YAN Kai. Recent advance on the conversion and upgrading of biomass-derived platform molecules [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2642-2654. |
| [5] | FENG Jiao, LIU Mingming, LIU Yao, WANG Xin, CHEN Kequan. Research progress in the biosynthesis of aliphatic short-chain diamines and diols from renewable feedstocks [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2655-2666. |
| [6] | SONG Kunli, XIAO Lei, MA Dandan, XIAO Peng, YANG Shasha, SHI Jianwen. A review of ammonia selective denitrification catalysts at ultra-low temperature [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2028-2035. |
| [7] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [8] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [9] | ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767. |
| [10] | ZHANG Tiantian, LIU Xia, ZHANG Hongfei, LI Qian, ZHOU Hongyu, LI Binglin. Green biosynthesis of docosahexaenoic acid-rich phosphatidylserine in solvent-free system [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1033-1041. |
| [11] | LI Zhixing, DAI Weijiong, LIU Xiangyang, WANG Fei, LI Ruifeng. Insight into structure and reactivity of ZSM-5 [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 788-808. |
| [12] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [13] | YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866. |
| [14] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
| [15] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |