Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1978-1986.DOI: 10.16085/j.issn.1000-6613.2024-0540
• Chemical processes and equipment • Previous Articles Next Articles
LI Ziliang(
), ZHANG Wei(
), HU Heng, WANG Yingjin, XU Na
Received:2024-04-02
Revised:2024-05-14
Online:2025-05-07
Published:2025-04-25
Contact:
ZHANG Wei
通讯作者:
张玮
作者简介:李梓良(2000—),男,硕士研究生,研究方向为化工过程建模与优化。E-mail:link321654@163.com。
基金资助:CLC Number:
LI Ziliang, ZHANG Wei, HU Heng, WANG Yingjin, XU Na. mGAN-NN method for low-cost chemical process modeling based on generative adversarial networks[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1978-1986.
李梓良, 张玮, 胡恒, 王盈锦, 徐娜. 基于生成对抗网络的化工过程低成本mGAN-NN建模[J]. 化工进展, 2025, 44(4): 1978-1986.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0540
| 工艺条件 | 最小值 | 最大值 |
|---|---|---|
| 磺化温度/℃ | 60 | 90 |
| SO3-MS摩尔比 | 0.8 | 1.6 |
| 老化时间/min | 20 | 60 |
| 老化温度/℃ | 50 | 100 |
| 工艺条件 | 最小值 | 最大值 |
|---|---|---|
| 磺化温度/℃ | 60 | 90 |
| SO3-MS摩尔比 | 0.8 | 1.6 |
| 老化时间/min | 20 | 60 |
| 老化温度/℃ | 50 | 100 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 60 | 1.2 | 40 | 80 | 66.50 |
| 2 | 60 | 1.2 | 20 | 80 | 61.56 |
| 3 | 60 | 1.2 | 60 | 80 | 68.83 |
| 4 | 60 | 1.2 | 20 | 60 | 41.64 |
| 5 | 60 | 1.2 | 40 | 60 | 46.16 |
| 6 | 60 | 1.2 | 60 | 60 | 48.32 |
| 59 | 80 | 1.6 | 20 | 80 | 79.50 |
| 60 | 80 | 1.6 | 40 | 80 | 81.30 |
| 61 | 80 | 1.6 | 60 | 80 | 83.11 |
| 62 | 80 | 1.6 | 20 | 60 | 73.42 |
| 63 | 80 | 1.6 | 40 | 60 | 74.87 |
| 64 | 90 | 1.6 | 60 | 60 | 77.74 |
| 65 | 90 | 1.6 | 30 | 70 | 80.92 |
| 66 | 90 | 1.6 | 50 | 70 | 81.75 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 60 | 1.2 | 40 | 80 | 66.50 |
| 2 | 60 | 1.2 | 20 | 80 | 61.56 |
| 3 | 60 | 1.2 | 60 | 80 | 68.83 |
| 4 | 60 | 1.2 | 20 | 60 | 41.64 |
| 5 | 60 | 1.2 | 40 | 60 | 46.16 |
| 6 | 60 | 1.2 | 60 | 60 | 48.32 |
| 59 | 80 | 1.6 | 20 | 80 | 79.50 |
| 60 | 80 | 1.6 | 40 | 80 | 81.30 |
| 61 | 80 | 1.6 | 60 | 80 | 83.11 |
| 62 | 80 | 1.6 | 20 | 60 | 73.42 |
| 63 | 80 | 1.6 | 40 | 60 | 74.87 |
| 64 | 90 | 1.6 | 60 | 60 | 77.74 |
| 65 | 90 | 1.6 | 30 | 70 | 80.92 |
| 66 | 90 | 1.6 | 50 | 70 | 81.75 |
| 超参数类型 | 生成器 | 鉴别器 |
|---|---|---|
| 网络结构 | 6-10-10-5 | 5-10-10-1 |
| 激活函数 | Leaky ReLU | Leaky ReLU、Sigmoid |
| 优化器 | SGD(0.04) | SGD(0.08) |
| 超参数类型 | 生成器 | 鉴别器 |
|---|---|---|
| 网络结构 | 6-10-10-5 | 5-10-10-1 |
| 激活函数 | Leaky ReLU | Leaky ReLU、Sigmoid |
| 优化器 | SGD(0.04) | SGD(0.08) |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 83.27961 | 1.161183 | 47.10971 | 81.89867 | 74.68918 |
| 2 | 86.30283 | 1.542565 | 33.57725 | 79.20454 | 86.05156 |
| 3 | 82.25621 | 1.208560 | 53.55812 | 74.62836 | 71.41930 |
| 4 | 72.73076 | 1.220473 | 56.39626 | 75.22123 | 68.25865 |
| 5 | 76.97067 | 1.519895 | 41.43793 | 93.79734 | 82.20417 |
| 6 | 79.32157 | 1.191388 | 50.84287 | 72.67689 | 68.36164 |
| 7 | 84.47624 | 1.593823 | 44.77314 | 87.52930 | 90.21171 |
| 8 | 88.42137 | 1.576962 | 48.98761 | 76.60762 | 88.80512 |
| 9 | 87.34681 | 1.532673 | 36.57060 | 81.57395 | 85.15310 |
| 10 | 72.72450 | 1.243067 | 52.85953 | 76.38229 | 59.94243 |
| 321 | 72.43844 | 1.418137 | 33.72336 | 86.06310 | 71.13159 |
| 322 | 87.74216 | 1.430092 | 25.99235 | 76.36067 | 69.06212 |
| 323 | 68.57316 | 1.467843 | 34.66464 | 93.57615 | 78.95146 |
| 324 | 67.15241 | 1.368005 | 48.84736 | 82.07817 | 45.17392 |
| 325 | 78.86573 | 1.366410 | 35.56188 | 68.77293 | 74.44617 |
| 326 | 89.28074 | 1.590475 | 22.41597 | 89.54008 | 87.87235 |
| 327 | 72.53215 | 1.027140 | 54.35593 | 61.22787 | 51.96266 |
| 328 | 65.12947 | 1.431815 | 24.65830 | 86.62648 | 51.53531 |
| 329 | 88.03262 | 1.594808 | 15.37602 | 89.72716 | 88.92242 |
| 330 | 71.01549 | 1.508555 | 27.28651 | 80.10245 | 75.49440 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 83.27961 | 1.161183 | 47.10971 | 81.89867 | 74.68918 |
| 2 | 86.30283 | 1.542565 | 33.57725 | 79.20454 | 86.05156 |
| 3 | 82.25621 | 1.208560 | 53.55812 | 74.62836 | 71.41930 |
| 4 | 72.73076 | 1.220473 | 56.39626 | 75.22123 | 68.25865 |
| 5 | 76.97067 | 1.519895 | 41.43793 | 93.79734 | 82.20417 |
| 6 | 79.32157 | 1.191388 | 50.84287 | 72.67689 | 68.36164 |
| 7 | 84.47624 | 1.593823 | 44.77314 | 87.52930 | 90.21171 |
| 8 | 88.42137 | 1.576962 | 48.98761 | 76.60762 | 88.80512 |
| 9 | 87.34681 | 1.532673 | 36.57060 | 81.57395 | 85.15310 |
| 10 | 72.72450 | 1.243067 | 52.85953 | 76.38229 | 59.94243 |
| 321 | 72.43844 | 1.418137 | 33.72336 | 86.06310 | 71.13159 |
| 322 | 87.74216 | 1.430092 | 25.99235 | 76.36067 | 69.06212 |
| 323 | 68.57316 | 1.467843 | 34.66464 | 93.57615 | 78.95146 |
| 324 | 67.15241 | 1.368005 | 48.84736 | 82.07817 | 45.17392 |
| 325 | 78.86573 | 1.366410 | 35.56188 | 68.77293 | 74.44617 |
| 326 | 89.28074 | 1.590475 | 22.41597 | 89.54008 | 87.87235 |
| 327 | 72.53215 | 1.027140 | 54.35593 | 61.22787 | 51.96266 |
| 328 | 65.12947 | 1.431815 | 24.65830 | 86.62648 | 51.53531 |
| 329 | 88.03262 | 1.594808 | 15.37602 | 89.72716 | 88.92242 |
| 330 | 71.01549 | 1.508555 | 27.28651 | 80.10245 | 75.49440 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 81.94295 | 1.589290 | 31.05080 | 53.97002 | 71.62635 |
| 2 | 85.71674 | 1.421059 | 54.15529 | 56.86942 | 79.99052 |
| 3 | 82.14872 | 1.557661 | 57.56562 | 82.33545 | 86.41391 |
| 4 | 65.56925 | 1.539463 | 38.97818 | 89.36489 | 84.61324 |
| 5 | 65.05901 | 1.102045 | 25.34751 | 69.97029 | 50.40371 |
| 6 | 83.24004 | 1.025123 | 45.12223 | 93.86857 | 79.09521 |
| 7 | 84.33916 | 1.494957 | 50.29488 | 61.54058 | 81.87912 |
| 8 | 85.11316 | 1.566982 | 18.85036 | 69.96391 | 82.20627 |
| 9 | 87.60520 | 1.297932 | 53.58565 | 68.32281 | 80.14999 |
| 10 | 55.89097 | 1.438010 | 31.89855 | 63.09228 | 53.58462 |
| 321 | 80.31209 | 1.484724 | 18.93740 | 91.06848 | 85.47252 |
| 322 | 89.57048 | 1.075123 | 45.77487 | 86.36514 | 74.65433 |
| 323 | 78.25847 | 0.994669 | 57.22416 | 66.59568 | 47.54068 |
| 324 | 70.41580 | 1.226993 | 58.36410 | 88.38225 | 81.18542 |
| 325 | 88.71901 | 1.592107 | 59.51335 | 81.95000 | 87.65301 |
| 326 | 85.77462 | 0.895628 | 39.64196 | 88.54185 | 65.74517 |
| 327 | 71.96869 | 1.531543 | 32.88764 | 75.05962 | 77.64820 |
| 328 | 53.58275 | 1.583197 | 52.03275 | 78.53060 | 80.30246 |
| 329 | 81.92057 | 1.586589 | 56.66399 | 58.78035 | 81.71073 |
| 330 | 63.53111 | 1.173218 | 58.87420 | 87.53125 | 73.50951 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 81.94295 | 1.589290 | 31.05080 | 53.97002 | 71.62635 |
| 2 | 85.71674 | 1.421059 | 54.15529 | 56.86942 | 79.99052 |
| 3 | 82.14872 | 1.557661 | 57.56562 | 82.33545 | 86.41391 |
| 4 | 65.56925 | 1.539463 | 38.97818 | 89.36489 | 84.61324 |
| 5 | 65.05901 | 1.102045 | 25.34751 | 69.97029 | 50.40371 |
| 6 | 83.24004 | 1.025123 | 45.12223 | 93.86857 | 79.09521 |
| 7 | 84.33916 | 1.494957 | 50.29488 | 61.54058 | 81.87912 |
| 8 | 85.11316 | 1.566982 | 18.85036 | 69.96391 | 82.20627 |
| 9 | 87.60520 | 1.297932 | 53.58565 | 68.32281 | 80.14999 |
| 10 | 55.89097 | 1.438010 | 31.89855 | 63.09228 | 53.58462 |
| 321 | 80.31209 | 1.484724 | 18.93740 | 91.06848 | 85.47252 |
| 322 | 89.57048 | 1.075123 | 45.77487 | 86.36514 | 74.65433 |
| 323 | 78.25847 | 0.994669 | 57.22416 | 66.59568 | 47.54068 |
| 324 | 70.41580 | 1.226993 | 58.36410 | 88.38225 | 81.18542 |
| 325 | 88.71901 | 1.592107 | 59.51335 | 81.95000 | 87.65301 |
| 326 | 85.77462 | 0.895628 | 39.64196 | 88.54185 | 65.74517 |
| 327 | 71.96869 | 1.531543 | 32.88764 | 75.05962 | 77.64820 |
| 328 | 53.58275 | 1.583197 | 52.03275 | 78.53060 | 80.30246 |
| 329 | 81.92057 | 1.586589 | 56.66399 | 58.78035 | 81.71073 |
| 330 | 63.53111 | 1.173218 | 58.87420 | 87.53125 | 73.50951 |
| 评价指标 | GANs | mGANs |
|---|---|---|
| W距离 | 113.40 | 74.45 |
| MMD | 0.4129 | 0.0056 |
| 评价指标 | GANs | mGANs |
|---|---|---|
| W距离 | 113.40 | 74.45 |
| MMD | 0.4129 | 0.0056 |
| 神经网络结构 | 激活函数 | 优化器 | 权重衰减 |
|---|---|---|---|
| 4-8-12-8-1 | Leaky ReLU(0.02) | SGD(0.01) | 0.001 |
| 神经网络结构 | 激活函数 | 优化器 | 权重衰减 |
|---|---|---|---|
| 4-8-12-8-1 | Leaky ReLU(0.02) | SGD(0.01) | 0.001 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.82 | 0.82 | 0.87 | 0.90 | 0.87 | 0.88 | 0.85 | 0.88 | 0.86 |
| 测试集R2 | 0.83 | 0.96 | 0.92 | 0.83 | 0.91 | 0.90 | 0.93 | 0.96 | 0.91 |
| 训练集MAE | 3.93 | 3.32 | 3.37 | 3.11 | 3.31 | 3.40 | 3.04 | 3.10 | 3.32 |
| 测试集MAE | 3.42 | 2.86 | 3.18 | 4.63 | 3.10 | 3.84 | 2.98 | 3.05 | 3.38 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.82 | 0.82 | 0.87 | 0.90 | 0.87 | 0.88 | 0.85 | 0.88 | 0.86 |
| 测试集R2 | 0.83 | 0.96 | 0.92 | 0.83 | 0.91 | 0.90 | 0.93 | 0.96 | 0.91 |
| 训练集MAE | 3.93 | 3.32 | 3.37 | 3.11 | 3.31 | 3.40 | 3.04 | 3.10 | 3.32 |
| 测试集MAE | 3.42 | 2.86 | 3.18 | 4.63 | 3.10 | 3.84 | 2.98 | 3.05 | 3.38 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.097 | 0.850 | 0.007 | 0.860 | 0.001 | 0.037 | 0.440 | 0.060 | 0.294 |
| 测试集R2 | 0.006 | 0.800 | 0.030 | 0.820 | 0.004 | 0.067 | 0.430 | 0.010 | 0.271 |
| 训练集MAE | 9.140 | 3.800 | 9.650 | 3.470 | 9.670 | 10.280 | 7.010 | 8.960 | 7.748 |
| 测试集MAE | 10.930 | 4.200 | 7.830 | 5.600 | 9.460 | 8.710 | 6.830 | 11.50 | 8.133 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.097 | 0.850 | 0.007 | 0.860 | 0.001 | 0.037 | 0.440 | 0.060 | 0.294 |
| 测试集R2 | 0.006 | 0.800 | 0.030 | 0.820 | 0.004 | 0.067 | 0.430 | 0.010 | 0.271 |
| 训练集MAE | 9.140 | 3.800 | 9.650 | 3.470 | 9.670 | 10.280 | 7.010 | 8.960 | 7.748 |
| 测试集MAE | 10.930 | 4.200 | 7.830 | 5.600 | 9.460 | 8.710 | 6.830 | 11.50 | 8.133 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.85 | 0.83 | 0.84 | 0.83 | 0.87 | 0.83 | 0.83 | 0.83 | 0.84 |
| 测试集R2 | 0.61 | 0.75 | 0.67 | 0.79 | 0.45 | 0.76 | 0.75 | 0.76 | 0.69 |
| 训练集MAE | 4.97 | 4.94 | 4.62 | 4.97 | 4.40 | 4.72 | 4.70 | 5.01 | 4.79 |
| 测试集MAE | 4.90 | 5.98 | 6.71 | 5.57 | 7.85 | 5.98 | 6.25 | 5.91 | 6.14 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.85 | 0.83 | 0.84 | 0.83 | 0.87 | 0.83 | 0.83 | 0.83 | 0.84 |
| 测试集R2 | 0.61 | 0.75 | 0.67 | 0.79 | 0.45 | 0.76 | 0.75 | 0.76 | 0.69 |
| 训练集MAE | 4.97 | 4.94 | 4.62 | 4.97 | 4.40 | 4.72 | 4.70 | 5.01 | 4.79 |
| 测试集MAE | 4.90 | 5.98 | 6.71 | 5.57 | 7.85 | 5.98 | 6.25 | 5.91 | 6.14 |
| 次数 | 活性物质量分数/% |
|---|---|
| 1 | 88.15 |
| 2 | 89.14 |
| 3 | 90.67 |
| 平均值 | 89.32 |
| 次数 | 活性物质量分数/% |
|---|---|
| 1 | 88.15 |
| 2 | 89.14 |
| 3 | 90.67 |
| 平均值 | 89.32 |
| 1 | BUTLER Keith T, DAVIES Daniel W, CARTWRIGHT Hugh, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. |
| 2 | ZHU Xinzhe, WAN Zhonghao, TSANG Daniel C W, et al. Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption[J]. Chemical Engineering Journal, 2021, 406: 126782. |
| 3 | DONER Nimeti, CIDDI Kerem, YALCIN Ibrahim Berk, et al. Artificial neural network models for heat transfer in the freeboard of a bubbling fluidised bed combustion system[J]. Case Studies in Thermal Engineering, 2023, 49: 103145. |
| 4 | ZHUANG Fuzhen, QI Zhiyuan, DUAN Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. |
| 5 | PAN Sinno Jialin, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
| 6 | SHU Jun, XIE Qi, YI Lixuan, et al. Meta-weight-net: Learning an explicit mapping for sample weighting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019: 1919-1930. |
| 7 | ZHONG Shifa, HU Jiajie, YU Xiong, et al. Molecular image-convolutional neural network (CNN) assisted QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data augmentation and model interpretation[J]. Chemical Engineering Journal, 2021, 408: 127998. |
| 8 | VERMEIRE Florence H, GREEN William H. Transfer learning for solvation free energies: From quantum chemistry to experiments[J]. Chemical Engineering Journal, 2021, 418: 129307. |
| 9 | PAN Sinno Jialin, TSANG Ivor W, KWOK James T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. |
| 10 | LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013: 2200-2207. |
| 11 | SUN Baochen, FENG Jiashi, SAENKO Kate. Correlation alignment for unsupervised domain adaptation[M]//Csurka G. Domain adaptation in computer vision applications. Cham: Springer, 2017: 153-171. |
| 12 | SANTORO Adam, BARTUNOV Sergey, BOTVINICK Matthew, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY, USA: ACM, 2016: 1842-1850. |
| 13 | VINYALS Oriol, BLUNDELL Charles, LILLICRAP Timothy, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM, 2016: 3637-3645. |
| 14 | SNELL Jake, SWERSKY Kevin, ZEMEL Richard, et al. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 4080-4090. |
| 15 | MALHOTRA Abhiraj. Single-shot image recognition using Siamese neural networks[C]//2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida, India: IEEE, 2023: 2550-2553. |
| 16 | LI Xinzhe, HUANG Jianqiang, LIU Yaoyao, et al. Learning to teach and learn for semi-supervised few-shot image classification[J]. Computer Vision and Image Understanding, 2021, 212: 103270. |
| 17 | FINN Chelsea, XU Kelvin, LEVINE Sergey. Probabilistic model-agnostic meta-learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: ACM, 2018: 9537-9548. |
| 18 | YANG Ruizhao, LI Yun, QIN Binyi, et al. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy[J]. RSC Advances, 2022, 12(3): 1769-1776. |
| 19 | JIN Huaiping, HUANG Shuqi, WANG Bin, et al. Soft sensor modeling for small data scenarios based on data enhancement and selective ensemble[J]. Chemical Engineering Science, 2023, 279: 118958. |
| 20 | WANG Jinrui, HAN Baokun, BAO Huaiqian, et al. Data augment method for machine fault diagnosis using conditional generative adversarial networks[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(12): 2719-2727. |
| 21 | ALQAHTANI Hamed, Manolya KAVAKLI-THORNE, KUMAR Gulshan. Applications of generative adversarial networks (GANs): An updated review[J]. Archives of Computational Methods in Engineering, 2021, 28(2): 525-552. |
| 22 | SHANG Zhiwu, ZHANG Jie, LI Wanxiang, et al. A novel small samples fault diagnosis method based on the self-attention Wasserstein generative adversarial network[J]. Neural Processing Letters, 2023, 55(5): 6377-6407. |
| 23 | ZHANG Han, XU Tao, LI Hongsheng, et al. StackGAN: Realistic image synthesis with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1947-1962. |
| 24 | WANG Chaoyue, XU Chang, YAO Xin, et al. Evolutionary generative adversarial networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 921-934. |
| 25 | ZHOU Xiaokang, HU Yiyong, WU Jiayi, et al. Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 570-580. |
| 26 | QI Guojun. Loss-sensitive generative adversarial networks on lipschitz densities[J]. International Journal of Computer Vision, 2020, 128(5): 1118-1140. |
| 27 | ARJOVSKY Martin, CHINTALA Soumith, BOTTOU Léon, et al. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, NSW, Australia: ACM, 2017: 214-223. |
| 28 | HUANG Yiming, LEI Hang, LI Xiaoyu, et al. Quantum maximum mean discrepancy GAN[J]. Neurocomputing, 2021, 454: 88-100. |
| 29 | ZHANG Zhiqiang, FAN Bin, LIU Yong, et al. Rapid warning of wind turbine blade icing based on MIV-tSNE-RNN[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5453-5459. |
| 30 | HOSSAIN Md Moazzem, HOSSAIN Md ALI, MUSA MIAH Abu Saleh, et al. Stochastic neighbor embedding feature-based hyperspectral image classification using 3D convolutional neural network[J]. Electronics, 2023, 12(9): 2082. |
| 31 | 姜圣坤, 韩博, 赵鑫, 等. 微通道反应器中甲苯过量连续绝热硝化制备单硝基甲苯[J]. 化工进展, 2022, 41(6): 2910-2914. |
| JIANG Shengkun, HAN Bo, ZHAO Xin, et al. Preparation of mononitrotoluene by continuous adiabatic nitration of excess toluene in microreactor[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2910-2914. | |
| 32 | 王犇, 王超, 尹进华. 微反应器内邻氨基苯甲酸甲酯的连续重氮化工艺[J]. 化工进展, 2021, 40(10): 5678-5691. |
| WANG Ben, WANG Chao, YIN Jinhua. Continuous-flow diazotization of methyl anthranilate in microreactor system[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5678-5691. |
| [1] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| [2] | CHENG Chonglyu, SHAN Conghui, ZHANG Mengfan, WEN X Jennifer, XU Baopeng. Research progress of hydrogen safety modeling [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1285-1297. |
| [3] | XIONG Siheng, HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin. Novel continuous non-structural model for mass exchanger network synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 635-645. |
| [4] | XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134. |
| [5] | LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120. |
| [6] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
| [7] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
| [8] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
| [9] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
| [10] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
| [11] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
| [12] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| [13] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
| [14] | ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, LIANG Dingcheng, LIU Jinchang. Modeling of porous carbon materials based on molecular simulation: State-of-the art [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551. |
| [15] | HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |