Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1298-1308.DOI: 10.16085/j.issn.1000-6613.2024-0376
• Energy processes and technology • Previous Articles Next Articles
ZHANG Xin’er1,2(
), PEI Liujun1,2, ZHOU Yudie1,2, JIN Kaili2, WANG Jiping1,2(
)
Received:2024-03-07
Revised:2024-04-09
Online:2025-04-16
Published:2025-03-25
Contact:
WANG Jiping
张馨儿1,2(
), 裴刘军1,2, 周雨蝶1,2, 靳凯丽2, 王际平1,2(
)
通讯作者:
王际平
作者简介:张馨儿(2000—),女,硕士研究生,研究方向为TiO2催化剂、油水分离。E-mail:1476825117@qq.com。
基金资助:CLC Number:
ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308.
张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0376
| 催化剂 | 助催化剂修饰方法 | 测试条件 | 产氢率 | 参考文献 |
|---|---|---|---|---|
| TiO2/RuO2/CuO | 一步溶胶-凝胶工艺 | 450W高压汞灯照射 | 20.7mmol/(h·g) | [ |
| Pt@TiO2 | 原位水热反应 | 300W Xe灯为光源的斩波光照射 | 4.389mmol/(h·g) | [ |
| Au/WO3/TiO2 | 溶胶-凝胶辅助光沉积法 | 紫外可见光照射 | 17.2mmol/(h·g) | [ |
| CdTe/Ag/TiO2 | 水热法 | 紫外可见光照射 | 53.0μmol/(h·cm2) | [ |
| Ni/C/TiO2 | 水解-煅烧法 | 300W Xe灯为光源的斩波光照射 | 1745.0μmol/(h·g) | [ |
| CaTiO3/Cu/TiO2 | 两步水热法 | 模拟太阳光照射 | 0.253mmol/(h·g) | [ |
| TiO2/MoC@C | 超声辅助沉积法 | 紫外可见光照射 | 504μmol/(h·g) | [ |
| Ti3CN@TiO2/CdS | 原位生长法 | 420nm滤光片的300W氙灯照射 | 3393.4μmol/(h·g) | [ |
| CdS/TiO2 | 水热法 | 紫外可见光照射 | 5791mL/(h·g) | [ |
| Au-BaO@TiO2/CdS | 水热法 | 100W氙灯为光源照射 | 13.54μmol/(h·g) | [ |
| Co2P/P-TiO2/2H-1T MoS2 | 水热法和磷化法 | 紫外可见光照射 | 4156μmol/(h·g) | [ |
| TiO2@CuS | 水热法 | 全光谱/近红外光照射 | 2467/173μmol/(h·g) | [ |
| CoP/Co2P@TiO2 | 低温磷化法 | 模拟太阳光的照射 | 824.5μmol/(h·g) | [ |
| Ni2P/TiO2 | 溶胶-凝胶法 | 紫外可见光照射 | 1300μmol/(h·g) | [ |
| Ni-P@CeO2-TiO2 | 热分解和沉积/还原法 | 太阳光和太阳模拟器的照射 | 1300μmol/(h·g) | [ |
| MoS x -rGO/TiO2 | 两步光催化还原法 | 紫外可见光照射 | 150.1μmol/(h·g) | [ |
| 1PtAu-TiO2 | 两步沉积-沉淀法 | 模拟太阳光照射 | 61.3μmol/(h·g) | [ |
| TiO2@RuO2 | 一步静电纺丝和高温煅烧法 | 300W氙灯作为全光谱范围内的光源 | 1489.3μmol/(h·g) | [ |
| 催化剂 | 助催化剂修饰方法 | 测试条件 | 产氢率 | 参考文献 |
|---|---|---|---|---|
| TiO2/RuO2/CuO | 一步溶胶-凝胶工艺 | 450W高压汞灯照射 | 20.7mmol/(h·g) | [ |
| Pt@TiO2 | 原位水热反应 | 300W Xe灯为光源的斩波光照射 | 4.389mmol/(h·g) | [ |
| Au/WO3/TiO2 | 溶胶-凝胶辅助光沉积法 | 紫外可见光照射 | 17.2mmol/(h·g) | [ |
| CdTe/Ag/TiO2 | 水热法 | 紫外可见光照射 | 53.0μmol/(h·cm2) | [ |
| Ni/C/TiO2 | 水解-煅烧法 | 300W Xe灯为光源的斩波光照射 | 1745.0μmol/(h·g) | [ |
| CaTiO3/Cu/TiO2 | 两步水热法 | 模拟太阳光照射 | 0.253mmol/(h·g) | [ |
| TiO2/MoC@C | 超声辅助沉积法 | 紫外可见光照射 | 504μmol/(h·g) | [ |
| Ti3CN@TiO2/CdS | 原位生长法 | 420nm滤光片的300W氙灯照射 | 3393.4μmol/(h·g) | [ |
| CdS/TiO2 | 水热法 | 紫外可见光照射 | 5791mL/(h·g) | [ |
| Au-BaO@TiO2/CdS | 水热法 | 100W氙灯为光源照射 | 13.54μmol/(h·g) | [ |
| Co2P/P-TiO2/2H-1T MoS2 | 水热法和磷化法 | 紫外可见光照射 | 4156μmol/(h·g) | [ |
| TiO2@CuS | 水热法 | 全光谱/近红外光照射 | 2467/173μmol/(h·g) | [ |
| CoP/Co2P@TiO2 | 低温磷化法 | 模拟太阳光的照射 | 824.5μmol/(h·g) | [ |
| Ni2P/TiO2 | 溶胶-凝胶法 | 紫外可见光照射 | 1300μmol/(h·g) | [ |
| Ni-P@CeO2-TiO2 | 热分解和沉积/还原法 | 太阳光和太阳模拟器的照射 | 1300μmol/(h·g) | [ |
| MoS x -rGO/TiO2 | 两步光催化还原法 | 紫外可见光照射 | 150.1μmol/(h·g) | [ |
| 1PtAu-TiO2 | 两步沉积-沉淀法 | 模拟太阳光照射 | 61.3μmol/(h·g) | [ |
| TiO2@RuO2 | 一步静电纺丝和高温煅烧法 | 300W氙灯作为全光谱范围内的光源 | 1489.3μmol/(h·g) | [ |
| 1 | ISHAQ Haris, DINCER Ibrahim, CRAWFORD Curran. A review on hydrogen production and utilization: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26238-26264. |
| 2 | ZHANG Jinxu, LING Bo, HE Yong, et al. Life cycle assessment of three types of hydrogen production methods using solar energy[J]. International Journal of Hydrogen Energy, 2022, 47(30): 14158-14168. |
| 3 | LEE Jung Eun, SHAFIQ Iqrash, HUSSAIN Murid, et al. A review on integrated thermochemical hydrogen production from water[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4346-4356. |
| 4 | FU Xianbiao, PEDERSEN Jakob, ZHOU Yuanyuan, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
| 5 | THANDA Vamshi Krishna, FEND Thomas, LAABER Dmitrij, et al. Experimental investigation of the applicability of a 250kW ceria receiver/reactor for solar thermochemical hydrogen generation[J]. Renewable Energy, 2022, 198: 389-398. |
| 6 | HOTA Poulami, Aranya DAS, MAITI Dilip K. A short review on generation of green fuel hydrogen through water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(2): 523-541. |
| 7 | HAN Xiao, LIU Pengyun, RAN Ran, et al. Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production[J]. Materials Today Energy, 2022, 23: 100896. |
| 8 | CHEN Wei-Hsin, LEE Jung Eun, JANG Seong-Ho, et al. A review on the visible light active modified photocatalysts for water splitting for hydrogen production[J]. International Journal of Energy Research, 2022, 46(5): 5467-5477. |
| 9 | LIU Yuan, YONG Xue, LIU Zhongyi, et al. Unified catalyst for efficient and stable hydrogen production by both the electrolysis of water and the hydrolysis of ammonia borane[J]. Advanced Sustainable Systems, 2019, 3(5): 1800161. |
| 10 | TEMIZ Mert, DINCER Ibrahim. Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems[J]. Energy, 2021, 219: 119554. |
| 11 | SONG Hui, LUO Shunqin, HUANG Hengming, et al. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives[J]. ACS Energy Letters, 2022, 7(3): 1043-1065. |
| 12 | HUANG Haowei, PRADHAN Bapi, HOFKENS Johan, et al. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance[J]. ACS Energy Letters, 2020, 5(4): 1107-1123. |
| 13 | XIA Changlei, NGUYEN Thi Hong Chuong, NGUYEN Xuan Cuong, et al. Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives[J]. Fuel, 2022, 307: 121745. |
| 14 | BAKBOLAT Baglan, DAULBAYEV Chingis, SULTANOV Fail, et al. Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: A review[J]. Nanomaterials, 2020, 10(9): 1790. |
| 15 | LIANG Ying, HUANG Guohe, XIN Xiaying, et al. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review[J]. Journal of Materials Science & Technology, 2022, 112: 239-262. |
| 16 | WU Qiang, GUO Jie, SUN Rui, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting[J]. Nano Energy, 2019, 61: 559-566. |
| 17 | GE Mingzheng, LI Qingsong, CAO Chunyan, et al. One-dimensional TiO2 nanotube photocatalysts for solar water splitting[J]. Advanced Science, 2017, 4(1): 1600152. |
| 18 | ALIZADEH SANI Mahmood, MALEKI Mohammad, Hadi EGHBALJOO-GHAREHGHESHLAGHI, et al. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films[J]. Advances in Colloid and Interface Science, 2022, 300: 102593. |
| 19 | RAHUL Theyyathum Kavil, MOHAN Minu, SANDHYARANI Neelakandapillai. Enhanced solar hydrogen evolution over in situ gold-platinum bimetallic nanoparticle-loaded Ti3+ self-doped titania photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3049-3059. |
| 20 | GOGOI Devipriya, NAMDEO Ashutosh, GOLDER Animes Kumar, et al. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2729-2744. |
| 21 | Wei OU, PAN Jiaqi, LIU Yanyan, et al. Two-dimensional ultrathin MoS2-modified black Ti3+-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production[J]. Journal of Energy Chemistry, 2020, 43: 188-194. |
| 22 | Alejandro PÉREZ-LARIOS, Rosendo LÓPEZ, Agileo HERNÁNDEZ-GORDILLO, et al. Improved hydrogen production from water splitting using TiO2-ZnO mixed oxides photocatalysts[J]. Fuel, 2012, 100: 139-143. |
| 23 | WEI Ping, LIU Jiawen, LI Zhonghua. Effect of Pt loading and calcination temperature on the photocatalytic hydrogen production activity of TiO2 microspheres[J]. Ceramics International, 2013, 39(5): 5387-5391. |
| 24 | TAN Yu, ZHANG Shenghan, SHI Rongxue, et al. Visible light active Ce/Ce2O/CeO2/TiO2 nanotube arrays for efficient hydrogen production by photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2016, 41(12): 5437-5444. |
| 25 | ISMAEL Mohammed. Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review[J]. Fuel, 2021, 303: 121207. |
| 26 | GUPTA Aayush, LIKOZAR Blaž, JANA Runia, et al. A review of hydrogen production processes by photocatalytic water splitting-From atomistic catalysis design to optimal reactor engineering[J]. International Journal of Hydrogen Energy, 2022, 47(78): 33282-33307. |
| 27 | YOU Bo, SUN Yujie. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
| 28 | YAN Yong, CHENG Xing, ZHANG Wanwan, et al. Plasma hydrogenated TiO2/nickel foam as an efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 885-894. |
| 29 | Valerie Bei-Yuan OH, Sue-Faye NG, Wee-Jun ONG. Is photocatalytic hydrogen production sustainable?-Assessing the potential environmental enhancement of photocatalytic technology against steam methane reforming and electrocatalysis[J]. Journal of Cleaner Production, 2022, 379: 134673. |
| 30 | DHARANI Shanmugapriya, VADIVEL Sethumathavan, GNANASEKARAN Lalitha, et al. S-scheme heterojunction photocatalysts for hydrogen production: Current progress and future prospects[J]. Fuel, 2023, 349: 128688. |
| 31 | ABANADES Stéphane. Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy[J]. Chemical Engineering Journal, 2019, 3(3): 63. |
| 32 | SAFARI Farid, DINCER Ibrahim. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy Conversion and Management, 2020, 205: 112182. |
| 33 | HAMUKWAYA Shindume Lomboleni, ZHAO Zengying, HAO Huiying, et al. Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2620-2630. |
| 34 | MOAKHAR Roozbeh Siavash, HOSSEINI-HOSSEINABAD Seyed Morteza, Saeid MASUDY-PANAH, et al. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: A review[J]. Advanced Materials, 2021, 33(33): 2007285. |
| 35 | GOPINATH Chinnakonda S, NALAJALA Naresh. A scalable and thin film approach for solar hydrogen generation: A review on enhanced photocatalytic water splitting[J]. Journal of Materials Chemistry A, 2021, 9(3): 1353-1371. |
| 36 | LI Weiming, ZHUANG Chunqiang, LI Yuanli, et al. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting[J]. Ceramics International, 2021, 47(15): 21769-21776. |
| 37 | SINGLA Shelly, SHARMA Surbhi, BASU Soumen, et al. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33696-33717. |
| 38 | WANG Qian, DOMEN Kazunari. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies[J]. Chemical Reviews, 2020, 120(2): 919-985. |
| 39 | LANG Xiaoling, GOPALAN Saianand, FU Wanlin, et al. Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: Fabrication, modification and performance[J]. Bulletin of the Chemical Society of Japan, 2021, 94(1): 8-20. |
| 40 | CENTURION Higor A, MELO Mauricio A, RABELO Lucas G, et al. Emerging trends of pseudobrookite Fe2TiO5 photocatalyst: A versatile material for solar water splitting systems[J]. Journal of Alloys and Compounds, 2023, 933: 167710. |
| 41 | MA Yiwen, LIN Lihua, TAKATA Tsuyoshi, et al. A perspective on two pathways of photocatalytic water splitting and their practical application systems[J]. Physical Chemistry Chemical Physics, 2023, 25(9): 6586-6601. |
| 42 | ZHANG Xia, WANG Daolei, MAN Xiaokun, et al. Influence of BiOIO3 morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4 heterojunctioned composite for Hg0 removal[J]. Journal of Colloid and Interface Science, 2020, 558: 123-136. |
| 43 | KIM Taehoon, LEE Tae Hyung, PARK Seo Yun, et al. Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration[J]. ACS Nano, 2023, 17(5): 4404-4413. |
| 44 | LI Meng, WANG Shuli, WANG Xinzhong, et al. Structure evolution from Fe2Ni MIL MOF to carbon confined O-doped FeNi/FeF2 via partial fluorination for improved oxygen evolution reaction[J]. Chemical Engineering Journal, 2022, 442: 136165. |
| 45 | HUANG Hao, LI Yuxuan, WANG Huilong, et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution[J]. Applied Surface Science, 2021, 538: 148132. |
| 46 | ZHAO Xiaohan, ZHOU Yuting, LIANG Qian, et al. Coupling MOF-derived titanium oxide with CdIn2S4 formed 2D/3D core-shell heterojunctions with enhanced photocatalytic performance[J]. Separation and Purification Technology, 2021, 279: 119765. |
| 47 | PATTANAYAK Prasanta, SINGH Paulomi, BANSAL Nitin Kumar, et al. Recent progress in perovskite transition metal oxide-based photocatalyst and photoelectrode materials for solar-driven water splitting[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108429. |
| 48 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| 49 | DU Mengmeng, QIU Bocheng, ZHU Qiaohong, et al. Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity[J]. Catalysis Today, 2019, 327: 340-346. |
| 50 | LEUNG Dennis, FU Xianliang, WANG Cuifang, et al. Hydrogen production over titania-based photocatalysts[J]. Chemistry Sustainability Energy Materials, 2010, 3(6): 681-694. |
| 51 | GUO Dawei, FENG Dongdong, ZHANG Yu, et al. Carbon material-TiO2 for photocatalytic reduction of CO2 and degradation of VOCs: A critical review[J]. Fuel Processing Technology, 2022, 231: 107261. |
| 52 | QIN Lan, REN Ran, HUANG Xiaoxue, et al. Photocatalytic activity of an Anderson-type polyoxometalate with mixed copper(Ⅰ)/copper(Ⅱ) ions for visible-light enhancing heterogeneous catalysis[J]. Journal of Solid State Chemistry, 2022, 310: 123052. |
| 53 | CHEN Jing, ABAZARI Reza, ADEGOKE Kayode Adesina, et al. Metal-organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction[J]. Coordination Chemistry Reviews, 2022, 469: 214664. |
| 54 | JULIYA Assoc P, V M Abdul MUJEEB, Parayil SREENIVASAN K, et al. Enhanced H2 evolution via photocatalytic water splitting using mesoporous TiO2/RuO2/CuO ternary nanomaterial[J]. Journal of Photochemistry and Photobiology, 2021, 8: 100076. |
| 55 | YIN Zhiguang, SONG Tingting, ZHOU Wenting, et al. Highly isolated Pt NPs embedded in porous TiO2 derived from MIL-125 with enhanced photocatalytic hydrogen production activity[J]. Journal of Catalysis, 2021, 402: 289-299. |
| 56 | TAHIR Muhammad, SIRAJ Mohammad, TAHIR Beenish, et al. Au-NPs embedded Z-scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution[J]. Applied Surface Science, 2020, 503 : 144344. |
| 57 | ZHU Shuxu, WANG Qingyao, CAO Dandan, et al. CdTe and Ag nanoparticles co-modified TiO2 nanotube arrays for the enhanced wastewater treatment and hydrogen production[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107207. |
| 58 | ZHAO Xueying, XIE Wenyu, SHAO Xueqing, et al. An effective Ni/C co-catalyst for promoting photocatalytic hydrogen evolution over TiO2 nanospheres[J]. Materials Science in Semiconductor Processing, 2022, 148: 106775. |
| 59 | YANG Junfeng, SHI Chenyang, DONG Yanhui, et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles[J]. Journal of Colloid and Interface Science, 2022, 605: 373-384. |
| 60 | LIU Jinfeng, WANG Ping, FAN Jiajie, et al. Carbon-coated cubic-phase molybdenum carbide nanoparticle for enhanced photocatalytic H2-evolution performance of TiO2 [J]. Journal of Energy Chemistry, 2020, 51: 253-261. |
| 61 | LI Dingyu, YANG Chengwu, RAJENDRAN Saravanan, et al. Nanoflower-like Ti3CN@TiO2/CdS heterojunction photocatalyst for efficient photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19580-19589. |
| 62 | RAO Vempuluru Navakoteswara, Lakshmana REDDY N, KUMARI Murikinati Mamatha,et al. Synthesis of titania wrapped cadmium sulfide nanorods for photocatalytic hydrogen generation[J]. Materials Research Bulletin, 2018, 103: 122-132. |
| 63 | DING Shangjun, YIN Xin, Xujie LYU, et al. One-step high-temperature solvothermal synthesis of TiO2/sulfide nanocomposite spheres and their solar visible-light applications[J]. ACS Applied Materials & Interfaces, 2012, 4(1): 306-311. |
| 64 | MANDARI Kotesh Kumar, KANG Misook. Highly active Co2P/2H-1T MoS2 cocatalyst with fast charge transfer and H2 production reaction toward effective photocatalytic activity of P-TiO2 [J]. Materials Today Sustainability, 2023, 23: 100444. |
| 65 | YU Bo, MENG Fanming, ZHOU Ting, et al. Construction of hollow TiO2/CuS nanoboxes for boosting full-spectrum driven photocatalytic hydrogen evolution and environmental remediation[J]. Ceramics International, 2021, 47(7): 8849-8858. |
| 66 | LIANG Rong, WANG Yanwen, QIN Chao, et al. P-type cobalt phosphide composites (CoP-Co2P) decorated on titanium oxide for enhanced noble-metal-free photocatalytic H2 evolution activity[J]. Langmuir, 2021, 37(11): 3321-3330. |
| 67 | TASLEEM Sehar, TAHIR Muhammad. Constructing MAX dispersed Ni2P/TiO2 nanocomposite with investigating influential effect of parameters through design expert and kinetic study for photocatalytic H2 evolution[J]. Advanced Powder Technology, 2023, 34(7): 104074. |
| 68 | AMEEN SHA Mashood, CHANDRASEKHARAN MEENU Preetha, SASIDHARAN SUMI Vijayakumari, et al. Tuning of electron transfer by Ni-P decoration on CeO2-TiO2 heterojunction for enhancement in photocatalytic hydrogen generation[J]. Materials Science in Semiconductor Processing, 2020, 105: 104742. |
| 69 | ZHAO Huaqing, ZHANG Yan, LIU Qing, et al. WSe2-loaded co-catalysts Cu3P and CNTs: Improving photocatalytic hydrogen precipitation and photocatalytic memory performance[J]. Journal of Colloid and Interface Science, 2023, 629: 937-947. |
| 70 | WEI Tingcha, DING Peijia, WANG Tao, et al. Facet-regulating local coordination of dual-atom cocatalyzed TiO2 for photocatalytic water splitting[J]. ACS Catalysis, 2021, 11(23): 14669-14676. |
| 71 | LI Hongying, ZHU Bicheng, SUN Jian, et al. Photocatalytic hydrogen production from seawater by TiO2/RuO2 hybrid nanofiber with enhanced light absorption[J]. Journal of Colloid and Interface Science, 2024, 654: 1010-1019. |
| 72 | PAN Yong, WEN Ming. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22055-22063. |
| 73 | LI Mengyan, LIU Hui, SONG Yanghang, et al. TiO2 homojunction with Au nanoparticles decorating as an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Materials Characterization, 2019, 151: 286-291. |
| 74 | AL-AZRI Z H N, ALOUFI Maher, CHAN Andrew, et al. Metal particle size effects on the photocatalytic hydrogen ion reduction[J]. ACS Catalysis, 2019, 9(5): 3946-3958. |
| 75 | LIU Jing, XU Mingze, ZHANG Tingsong, et al. Al/TiO2 composite as a photocatalyst for the degradation of organic pollutants[J]. Environmental Science and Pollution Research, 2023, 30(4): 9738-9748. |
| 76 | SABIR Mamoona, RAFIQ Khezina, ABID Muhammad Zeeshan, et al. Growth of tunable Au-BaO@TiO2/CdS heterostructures: Acceleration of hydrogen evolution from water splitting[J]. Fuel, 2023, 353: 129196. |
| 77 | ARUNACHALAM Prabhakarn, ALORAIJ Haneen A, AMER Mabrook S, et al. Activation effect of nickel phosphate co-catalysts on the photoelectrochemical water oxidation performance of TiO2 nanotubes[J]. Journal of Saudi Chemical Society, 2022, 26(4): 101484. |
| 78 | XU Ying, LI Yongan, WANG Ping, et al. Highly efficient dual cocatalyst-modified TiO2 photocatalyst: RGO as electron-transfer mediator and MoS x as H2-evolution active site[J]. Applied Surface Science, 2018, 430: 176-183. |
| 79 | PANCHAL Deepak, SHARMA Abhishek, MONDAL Prasenjit, et al. Heterolayered TiO2@layered double hydroxide-MoS2 nanostructure for simultaneous adsorption-photocatalysis of co-existing water contaminants[J]. Applied Surface Science, 2021, 553: 149577. |
| 80 | LI Yujie, DENG Xiaotong, TIAN Jian, et al. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting[J]. Applied Materials Today, 2018, 13: 217-227. |
| [1] | WANG Yue, ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188. |
| [2] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
| [3] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
| [4] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
| [5] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
| [6] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
| [7] | ZHAO Wenxiao, PEI Liujun, JIA Weike, WANG Jiping. Preparation of TiO2 based two-phase composite and its electrocatalytic hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6760-6768. |
| [8] | ZHANG Wentao, ZHOU Jiahui, ZHANG Runzhi, WANG Luojia, XU Gang. Optimization strategy of wind and solar hydrogen production alkaline electrolyzer cluster considering energy consumption characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6119-6128. |
| [9] | FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516. |
| [10] | MA Yan, GAO Ningbo, SUN Anbang, QUAN Cui. Integrated plastics pyrolysis and plasma-catalysis reforming for H2 production [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5901-5912. |
| [11] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
| [12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
| [13] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
| [14] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
| [15] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |