| [1] |
周印洁, 吉思蓓, 何松阳, 等. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2 [J]. 化工学报, 2025, 76(3): 1093-1101.
|
|
ZHOU Yinjie, JI Sibei, HE Songyang, et al. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks[J]. CIESC Journal, 2025, 76(3): 1093-1101.
|
| [2] |
向腾龙, 王治红, 汪贵, 等.液化天然气冷能梯级利用的多功能集成系统研究[J].化工学报, 2024, 75(10): 3401-3413.
|
|
XIANG Tenglong, WANG Zhihong, WANG Gui, et al. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413.
|
| [3] |
刘军, 马贵阳, 潘振, 等. 水合物晶核充分发展对水合物生成量影响的实验研究[J]. 工程热物理学报, 2016, 37(5): 941-945.
|
|
LIU Jun, MA Guiyang, PAN Zhen, et al. A experimental study on the change of the number of hydrate formation affected by hydrate nucleation fully development[J]. Journal of Engineering Thermophysics, 2016, 37(5): 941-945.
|
| [4] |
王谨航, 何勇, 史伶俐, 等. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602.
|
|
WANG Jinhang, HE Yong, SHI Lingli, et al. Progress of gas hydrate anti-agglomerants[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602.
|
| [5] |
张准顺, 潘振, 包瑞新, 等. 掺氢比对天然气管道泄漏扩散影响的模拟研究[J]. 辽宁石油化工大学学报, 2024, 44(4): 44-50.
|
|
ZHANG Zhunshun, PAN Zhen, BAO Ruixin, et al. Simulation study on the influence of hydrogen blending ratio on natural gas pipeline leakage and diffusion[J]. Journal of Liaoning Petrochemical University, 2024, 44(4): 44-50.
|
| [6] |
陈旭阳, 杨帆, 姜文全, 等. 基于LNG冷能的卡琳娜-三级有机朗肯循环性能分析[J]. 辽宁石油化工大学学报, 2024, 44(5): 90-96.
|
|
CHEN Xuyang, YANG Fan, JIANG Wenquan, et al. Performance analysis of the kalina-three-stage organic rankine combined cycle based on LNG cold energy[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 90-96.
|
| [7] |
刘礼豪, 黄婷, 雍宇, 等. 含粉砂盐水体系甲烷水合物生成与固相沉积规律[J]. 化工学报, 2024, 75(5): 1987-2000.
|
|
LIU Lihao, HUANG Ting, YONG Yu, et al. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems[J]. CIESC Journal, 2024, 75(5): 1987-2000.
|
| [8] |
樊栓狮, 刘发平, 郎雪梅, 等. CO2捕集与置换开采天然气水合物中甲烷的研究进展[J]. 天然气化工 — C1化学与化工, 2022, 47(4): 1-10.
|
|
FAN Shuanshi, LIU Faping, LANG Xuemei, et al. Research progress of CO2 capture and replacement of methane from natural gas hydrates[J]. Natural Gas Chemical Industry, 2022, 47(4): 1-10.
|
| [9] |
姚国宝, 李占东, 范瑞彬, 等. 外部扰动促进气体水合物生成方法的研究进展[J]. 能源化工, 2023, 44(4): 8-15.
|
|
YAO Guobao, LI Zhandong, FAN Ruibin, et al. Research progress on methods for promoting gas hydrate formation through external disturbances[J]. Energy Chemical Industry, 2023, 44(4): 8-15.
|
| [10] |
刘军, 潘振, 马贵阳, 等. 降低“固封” 对甲烷水合物生成的影响[J]. 化工进展, 2016, 35(5): 1410-1417.
|
|
LIU Jun, PAN Zhen, MA Guiyang, et al. Experimental study on decreasing the effect of the solid seal on methane hydrate[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1410-1417.
|
| [11] |
HE S, LIANG D Q, LI D L, et al. The formation of natural gas hydrate from SDS-solutions and decomposition by microwave heating in a static reactor[J]. Petroleum Science and Technology, 2013, 31(16): 1655-1664.
|
| [12] |
LIU Weiguo, LI Yanghui, XU Xiaohu. Influence factors of methane hydrate formation from ice:Temperature, pressure and SDS surfactant[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 405-410.
|
| [13] |
LI Xingxun, LIU Ming, LI Qingping, et al. TBAB hydrate formation and growth in a microdevice under static and dynamic conditions[J]. Petroleum Science, 2024, 21(2): 1396-1404.
|
| [14] |
SHI Bohui, SONG Shangfei, CHEN Yuchuan, et al. Rheological study of methane gas hydrates in the presence of micron-sized sand particles[J]. Chinese Journal of Chemical Engineering, 2024, 70: 149-161.
|
| [15] |
邝若谷, 吴良猛, 谢凤梅, 等. 活性炭+THF溶液体系中CO2水合物生成特性研究[J]. 低碳化学与化工, 2023, 48(5): 109-114, 134.
|
|
KUANG Ruogu, WU Liangmeng, XIE Fengmei, et al. Study on characteristics of CO2 hydrate formation in activated carbon+THF solution system[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 109-114, 134.
|
| [16] |
DONG Lin, LIU Xiaoqiang, GONG Bin, et al. Geomechanical properties of hydrate-bearing strata and their applications[J]. Advances in Geo-Energy Research, 2024, 11(3): 161-167.
|
| [17] |
ZHOU Xueqing, WU Shiguo, BOSIN Aleksandr, et al. Evaluation of CO2 hydrate storage potential in the Qiongdongnan Basin via combining the phase equilibrium mechanism and the volumetric method[J]. Advances in Geo-Energy Research, 2024, 11(3): 220-229.
|
| [18] |
LIU Jun, LIANG Deqing. Investigation on methane hydrate formation in silica gel particles below the freezing point[J]. RSC Advances, 2019, 9(26): 15022-15032.
|
| [19] |
郎雪梅, 姚柳眉, 樊栓狮, 等. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860.
|
|
LANG Xuemei, YAO Liumei, FAN Shuanshi, et al. Numerical simulation of methane hydrate formation and heat transfer in porous materials[J]. CIESC Journal, 2022, 73(9): 3851-3860.
|
| [20] |
SEO Yongwon, LEE Huen, UCHIDA Tsutomu. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[J]. Langmuir, 2002, 18(24): 9164-9170.
|
| [21] |
ZHONG Dongliang, LI Zheng, LU Yiyu, et al. Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 7973-7980.
|
| [22] |
ZHU Yujie, CHEN Yuzhou, XIE Yan, et al. Microscopic experimental study on the effects of NaCl concentration on the self-preservation effect of methane hydrates under 268.15K[J]. Chinese Journal of Chemical Engineering, 2024, 73:1-14.
|
| [23] |
DUAN Jun, ZHONG Keyi, JIANG Shuyi, et al. Insight into the micro-mechanism of hydrate-based methane storage from active ice[J]. Fuel, 2025, 381: 133-154.
|
| [24] |
KANG Seong-Pil, LEE Jonghyub, SEO Yutaek. Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure[J]. Chemical Engineering Journal, 2013, 218: 126-132.
|
| [25] |
ZARIFI Mojdeh, JAVANMARDI Jafar, HASHEMI Hamed, et al. Experimental study and thermodynamic modelling of methane and mixed C1 + C2 + C3 clathrate hydrates in the presence of mesoporous silica gel[J]. Fluid Phase Equilibria, 2016, 423: 17-24.
|