| [1] |
董彦芝, 刘芃, 王国栋,等. 航天器结构用材料应用现状与未来需求[J]. 航天器环境工程, 2010, 27(1): 41-44, 4.
|
|
DONG Yanzhi, LIU Peng, WANG Guodong, et al. Application and future demand of materials for spacecraft structures[J]. Spacecraft Environment Engineering, 2010, 27(1): 41-44, 4.
|
| [2] |
范绪箕. 气动加热与热防护系统[M]. 北京: 科学出版社, 2004.
|
|
FAN Xuji. Pneumatic heating and thermal protection system[M]. Beijing: Science Press, 2004.
|
| [3] |
OZMAT B. Interconnect technologies and the thermal performance of MCM[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(5): 860-869.
|
| [4] |
MCGLEN Ryan J, JACHUCK Roshan, LIN Song. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156.
|
| [5] |
GARIMELLA Suresh V. Advances in mesoscale thermal management technologies for microelectronics[J]. Microelectronics Journal, 2006, 37(11): 1165-1185.
|
| [6] |
黄梦彬. 一种强迫风冷机柜的热设计[J]. 电子机械工程, 2006, 22(2): 12-13, 36.
|
|
HUANG Mengbin. Thermal design of the forced air-cooling radar cabinet[J]. Electro-Mechanical Engineering, 2006, (2): 12-13, 36.
|
| [7] |
夏侯国伟, 王当, 刘业鹏. IGBT功率模块冷却技术的综述[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 63-67, 84.
|
|
XIAHOU Guowei, WANG Dang, LIU Yepeng. Summary of IGBT power module cooling technology[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(1):63-67, 84.
|
| [8] |
鲁祥友, 程远霞, 刘美静, 等. 用于大功率LED冷却的热管散热器的实验研究[J]. 半导体光电, 2008, 29(5): 651-654.
|
| [69] |
SCHMIDT Matthias, SZCZUKOWSKI Christoph, Christian ROßKOPF, et al. Experimental results of a 10kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559.
|
| [70] |
YAN T S, LI T X, XU J X, et al. Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage[J]. Applied Thermal Engineering, 2020, 166: 114655.
|
| [71] |
张仁元. 相变材料与相变储热技术[M]. 北京: 科学出版社, 2008: 10-11.
|
|
ZHANG Renyuan. Phase change materials and phase change heat storage technology[M]. Beijing: Science Press, 2008: 10-11.
|
| [72] |
王温馨, 齐红, 丁益民. 水合盐相变储能材料的研究进展[J]. 化学通报, 2021, 84(4): 330-338.
|
|
WANG Wenxin, QI Hong, DING Yimin. Research progress in hydrated salt composite phase change energy storage materials[J]. Chemistry, 2021, 84(4): 330-338.
|
| [73] |
KANNAN Sarath, KUMAR Navin, Milind A JOG, et al. Phase-transition efficacy and material compatibility with thermal cycling of lithium nitrate trihydrate as a phase-change material[J]. Industrial & Engineering Chemistry Research, 2022, 61(43): 16341-16351.
|
| [74] |
MAN Xi, LU Hao, XU Qing, et al. Review on the thermal property enhancement of inorganic salt hydrate phase change materials[J]. Journal of Energy Storage, 2023, 72: 108699.
|
| [75] |
SHAMBERGER Patrick J, REID Timothy. Thermophysical properties of lithium nitrate trihydrate from (253 to 353)K[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1404-1411.
|
| [76] |
VAN ESSEN V M, GORES J COT, BLEIJENDAAL L P J, et al. Characterization of salt hydrates for compact seasonal thermochemical storage[C]//ASME 2009 3rd International Conference on Energy Sustainability. San Francisco, California, USA: ASMEDC, 2010: 825-830.
|
| [77] |
LANE G A, ROSSOW H E. Hydrated MgCl2 or (MgNO3)2/MgCl2 reversible phase change compositions: EP0054758 [P]. 1981-06-09.
|
| [78] |
苑坤杰, 张正国, 方晓明, 等. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35(6): 1820-1826.
|
| [8] |
LU Xiangyou, CHENG Yuanxia, LIU Meijing, et al. Experimental investigation on heat pipe heat sink for cooling high power LED[J]. Semiconductor Optoelectronics, 2008, 29(5): 651-654.
|
| [9] |
XU Hongbo, SI Chunqiang, SHAO Shuangquan, et al. Experimental investigation on heat transfer of spray cooling with isobutane (R600a)[J]. International Journal of Thermal Sciences, 2014, 86: 21-27.
|
| [10] |
ZHANG Yang, ZHANG Yue, BAKIR Muhannad S. Thermal design and constraints for heterogeneous integrated chip stacks and isolation technology using air gap and thermal bridge[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(12): 1914-1924.
|
| [11] |
闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124.
|
|
YAN Ting, WANG Wenhuan, WANG Ruzhu. Present status and progress of research on chemical adsorption heat storage [J]. Materials Review, 2018, 32(23): 4107-4115, 4124.
|
| [12] |
PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610.
|
| [13] |
杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述[J]. 中国科学基金, 2017, 31(2): 109-114.
|
|
DU Shanyi, FANG Daining, MENG Songhe, et al. Review of the achievements of major research plan on “key fundamental scientific problems on hypersonic vehicle”[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(2): 109-114.
|
| [14] |
贺芳, 米镇涛, 孙海云. 提高烃类燃料热沉的研究进展[J]. 化学进展, 2006, 18(S2): 1041-1048.
|
|
HE Fang, MI Zhentao, SUN Haiyun. Improvement of heat sink of endothermic hydrocarbon fuels[J]. Progress in Chemistry, 2006, 18(S2): 1041-1048.
|
| [15] |
孙兆虎. 高超声速飞行器结构热问题讨论[J]. 航空科学技术, 2008, 19(3): 13-16.
|
|
SUN Zhaohu.The issues of the aerodynamic heating and thermal protection of hypersonic flight vehicle[J]. Aeronautical Science and Technology, 2008, 19(3): 13-16.
|
| [78] |
YUAN Kunjie, ZHANG Zhengguo, FANG Xiaoming, et al. Research progress of inorganic hydrated salts and their phase change heat storage composites[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1820-1826.
|
| [79] |
LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157.
|
| [80] |
SHARMA S K, JOTSHI C K, KUMAR S. Thermal stability of sodium salt hydrates for solar energy storage applications[J]. Solar Energy, 1990, 45(3): 177-181.
|
| [81] |
曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-233.
|
|
ZENG Zheng, SHAO Weihua, HU Borong, et al. Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE, 2017, 37(1): 221-233.
|
| [82] |
李文琛, 蔡一凡, 严泰森, 等. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023.
|
|
LI Wenchen, CAI Yifan, YAN Taisen, et al. Preparation and thermal storage properties of sodium acetate trihydrate-expanded graphite as phase change composite[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1015-1023.
|
| [83] |
WANG Qian, WANG Jiangtao, CHEN Yunyu, et al. Experimental investigation of barium hydroxide octahydrate as latent heat storage materials[J]. Solar Energy, 2019, 177: 99-107.
|
| [84] |
KENISARIN Murat, MAHKAMOV Khamid. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286.
|
| [85] |
杜林秀, 王磊. 某风冷机载电子设备散热设计[J]. 中国机械, 2022(9): 12-15.
|
|
DU Linxiu, WANG Lei. Heat dissipation design of an air-cooled airborne electronic equipment[J]. Machine China, 2022 (9): 12-15.
|
| [86] |
IATRIDES CLÉMENT V F F. Cooling devive with endothermic chemical reaction: EP3524905[P]. 2019-08-14.
|
| [16] |
周印佳, 张志贤. 航天器可重复使用热防护技术研究进展与应用[J]. 航天返回与遥感, 2019, 40(5): 27-40.
|
|
ZHOU Yinjia, ZHANG Zhixian. Research progress and applications of reusable thermal protection technology for spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(5): 27-40.
|
| [17] |
赵梦熊. 载人飞船返回舱的烧蚀防热[J]. 气动实验与测量控制, 1996,10(3): 1-9.
|
|
ZHAO Mengxiong. Ablation heat protection of manned spacecraft’s return cabin[J]. Journal of Experiments in Fluid Mechanics, , 1996, 10(3): 1-9.
|
| [18] |
党嘉立, 顾兆栴. 中国“神州号”载人飞船返回舱防热材料现状及展望:第十二届全国复合材料学术会议论文集[C]. 天津: 天津大学出版社, 2002: 15-19.
|
|
DANG Jiali, GU Zhaozhan. Current situation and prospect of thermal protection materials in the re-entry capsule of China’s Shenzhou manned spacecraft: Proceedings of the 12th National Conference on Composite Materials[C]. Tianjin: Tianjin University Press, 2002: 15-19.
|
| [19] |
JENKINS Dennis R. X-15 extending the frontiers of flight[M]. Washington DC : NASA, 2007.
|
| [20] |
黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716.
|
|
HUANG Hongyan, SU Lijun, LEI Chaoshuai, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716.
|
| [21] |
SHOEV G, OBLAPENKO G, KUNOVA O, et al. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows[J]. Acta Astronautica, 2018, 144: 147-159.
|
| [22] |
李广德, 张长瑞, 胡海峰, 等. 盖板式陶瓷热防护系统的传热性能优化[J]. 国防科技大学学报, 2014, 36(5): 143-148.
|
|
LI Guangde, ZHANG Changrui, HU Haifeng, et al. Optimization study of heat transfer properties for generic shingle ceramic thermal protection system[J]. Journal of National of University of Defense Technology, 2014, 36(5): 143-148.
|
| [23] |
夏刚, 程文科, 秦子增. 充气式再入飞行器柔性热防护系统的发展状况[J]. 宇航材料工艺, 2003, 33(6): 1-6.
|
|
XIA Gang, CHENG Wenke, QIN Zizeng. Development of flexible thermal protection for system inflatable re-entry vehicles[J]. Aerospace Materials & Technology, 2003, 33(6): 1-6.
|
| [24] |
吴国庭. 哥伦比亚号防热系统概貌[J]. 国际太空, 2003(6): 26-28.
|
|
WU Guoting. General situation of Columbia’s thermal protection system[J]. Space International, 2003(6): 26-28.
|
| [25] |
陈世锋. 雷达制导部件高热流密度组件散热技术[J]. 电子机械工程, 2014, 30(2): 12-15.
|
|
CHEN Shifeng. Heat dissipation technology of high heat flux components on radar guidance assembly[J]. Electro-Mechanical Engineering, 2014, 30(2): 12-15.
|
| [26] |
陈万创. 战术导弹电子设备热设计研究[J]. 环境技术, 1997, 15(2): 24-28.
|
|
CHEN Wanchuang. Research on the thermal design of tactial missile electronic equipment[J]. Environmental Technology, 1997, 15(2): 24-28.
|
| [27] |
BLAND Reginald B. EWING Frederick J. Cooling with endothermic chemical reactions: US3067594[P]. 1962-12-11.
|
| [28] |
BAYON Alicia, BADER Roman, JAFARIAN Mehdi, et al. Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications[J]. Energy, 2018, 149: 473-484.
|
| [29] |
SUNKU PRASAD J, MUTHUKUMAR P, DESAI Fenil, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: 113733.
|
| [30] |
张映明. 与范特霍夫规则相关的两个问题[J]. 化学教学, 2014 (4): 74-77.
|
| [87] |
盛强, 邢玉明, 罗恒. 八水氢氧化钡相变材料储热性能实验[J]. 北京航空航天大学学报, 2014, 40(5): 635-638.
|
|
SHENG Qiang, XING Yuming, LUO Heng. Experiment on thermal storage performance of barium hydroxide octahydrate phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5): 635-638.
|
| [88] |
毛发, 章学来, 王友利, 等. 八水合氢氧化钡与相变蓄热容器的相容性研究[J]. 太阳能学报, 2017, 38(8): 2292-2296.
|
|
MAO Fa, ZHANG Xuelai, WANG Youli, et al. Compatibility study of barium hydroxide octahydrate and phase change heat storage container[J]. Acta Energiae Solaris Sinica, 2017, 38(8): 2292-2296.
|
| [89] |
华维三, 章学来, 刘锋, 等. 相变材料复合八水氢氧化钡的制备及热性能[J]. 化工进展, 2018, 37(11): 4384-4389.
|
|
HUA Weisan, ZHANG Xuelai, LIU Feng, et al. Preparation and thermal properties of composite barium hydroxide octahydrate for energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4384-4389.
|
| [90] |
LIU Yizhe, LI Xiaoxiang, XU Yangzhe, et al. Carbon-enhanced hydrated salt phase change materials for thermal management applications[J]. Nanomaterials, 2024, 14(13): 1077.
|
| [91] |
LOUIE David L Y, WANG Yifeng, RAO Rekha, et al. Study of alkaline carbonate cooling to mitigate ex-vessel molten corium accidents[J]. Nuclear Engineering and Design, 2022, 392: 111752.
|
| [92] |
GALAN Isabel, GLASSER Fredrik P, ANDRADE Carmen. Calcium carbonate decomposition[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2): 1197-1202.
|
| [93] |
Laurie ANDRÉ, ABANADES Stéphane. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13: 193-205.
|
| [94] |
KYAW Kyaw, MATSUDA Hitoki, HASATANI Masanobu. Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading[J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 119-125.
|
| [95] |
OBERMEIER Jonas, SAKELLARIOU Kyriaki G, TSONGIDIS Nikolaos I, et al. Material development and assessment of an energy storage concept based on the CaO-looping process[J]. Solar Energy, 2017, 150: 298-309.
|
| [30] |
ZHANG Yingming. Two problems related to van’t Hoff’s rule[J]. Education in Chemistry, 2014 (4): 74-77.
|
| [31] |
William PRENGLE H, SUN Chihua. Operational chemical storage cycles for utilization of solar energy to produce heat or electric power[J]. Solar Energy, 1976, 18(6): 561-567.
|
| [32] |
WENTWORTH W E, CHEN E. Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy, 1976, 18(3): 205-214.
|
| [33] |
LEVITAN R, ROSIN H, LEVY M. Chemical reactions in a solar furnace—Direct heating of the reactor in a tubular receiver[J]. Solar Energy, 1989, 42(3): 267-272.
|
| [34] |
Jaume COT-GORES, CASTELL Albert, CABEZA Luisa F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5207-5224.
|
| [35] |
HARRIES David N, PASKEVICIUS Mark, SHEPPARD Drew A, et al. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549.
|
| [36] |
ZHANG Jian, YAN Shuai, XIA Guanglin, et al. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride[J]. Journal of Magnesium and Alloys, 2021, 9(2): 647-657.
|
| [37] |
FELLET Melissae, BUCKLEY Craig E, PASKEVICIUS Mark, et al. Research on metal hydrides revived for next-generation solutions to renewable energy storage[J]. MRS Bulletin, 2013, 38(12): 1012-1013.
|
| [38] |
林贵平, 余敏贤. 金属氢化物热泵及其在载人航天生保系统中的应用[J]. 空间科学学报, 2002, 22(2): 177-183.
|
|
LIN Gulping, YU Minxian. Metal hydride heat pump and its application in the life support system of manned space flight[J]. Chinese Journal of Space Science, 2002, 22(2): 177-183.
|
| [39] |
顾清之. 镁-氢化镁热化学蓄热系统数值模拟和实验研究[D]. 上海: 上海交通大学, 2013.
|
|
GU Qingzhi. Numerical simulation and experimental study of magnesium-magnesium hydride themochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2013.
|
| [96] |
SONG Chao, LIU Xianglei, ZHENG Hangbin, et al. Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability[J]. Chemical Engineering Journal, 2021, 406: 126282.
|
| [97] |
RHODES Nathan R, BARDE Amey, RANDHIR Kelvin, et al. Solar thermochemical energy storage through carbonation cycles of SrCO3/SrO supported on SrZrO3 [J]. ChemSusChem, 2015, 8(22): 3793-3798.
|
| [98] |
MICCIO F, MURRI A N, LANDI E. High-temperature capture of CO2 by strontium oxide sorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6696-6707.
|
| [99] |
BAJAJ Ishan, PENG Xinyue, MARAVELIAS Christos T. Screening and property targeting of thermochemical energy storage materials in concentrated solar power using thermodynamics-based insights and mathematical optimization[J]. RSC Sustainability, 2024, 2(4): 943-960.
|
| [100] |
BEHRENS Burkhard, Mark MÜLLER. Technologies for thermal protection systems applied on re-usable launcher[J]. Acta Astronautica, 2004, 55(3/4/5/6/7/8/9): 529-536.
|
| [101] |
王湘阳. 炭化材料烧蚀机理与热导率预测方法研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
WANG Xiangyang. Study on ablation mechanism and thermal conductivity inversion of charring material[D]. Hefei: University of Science and Technology of China, 2021.
|
| [102] |
薛华飞. 碳化硅改性碳/酚醛烧蚀材料的制备与烧蚀机理初探[D]. 哈尔滨: 哈尔滨理工大学, 2015.
|
|
XUE Huafei. Fabrication of SiCp modified carbon/phenolic ablator and preliminary study on its ablation mechanism[D]. Harbin: Harbin University of Science and Technology, 2015.
|
| [103] |
ZHU Qianqian, WANG Zhenhao, ZENG Hui, et al. Effects of graphene on various properties and applications of silicone rubber and silicone resin[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106240.
|
| [104] |
曹碧雯, 刘宁, 杨杰. 环氧有机硅类烧蚀涂料研究进展[J]. 合成材料老化与应用, 2020, 49(3): 106-109, 77.
|
|
CAO Biwen, LIU Ning, YANG Jie. Research progress on epoxy silicone ablative coatings[J]. Synthetic Materials Aging and Application, 2020, 49(3): 106-109, 77.
|
| [40] |
BAO Zewei. Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5664-5676.
|
| [41] |
LIU Haizhen, WANG Xinhua, LIU Yongan, et al. Improved hydrogen storage properties of MgH2 by ball milling with AlH3: Preparations, de/rehydriding properties, and reaction mechanisms[J]. Journal of Materials Chemistry A, 2013, 1(40): 12527-12535.
|
| [42] |
REISER A, BOGDANOVIĆ B, SCHLICHTE K. The application of Mg-based metal-hydrides as heat energy storage systems[J]. International Journal of Hydrogen Energy, 2000, 25(5): 425-430.
|
| [43] |
BALOGH M P, TIBBETTS G G, PINKERTON F E, et al. Phase changes and hydrogen release during decomposition of sodium alanates[J]. Journal of Alloys and Compounds, 2003, 350(1/2): 136-144.
|
| [44] |
FAN Xiulin, XIAO Xuezhang, HOU Jiechang, et al. Reversible hydrogen storage behaviors and microstructure of TiC-doped sodium aluminum hydride[J]. Journal of Materials Science, 2009, 44(17): 4700-4704.
|
| [45] |
Andreas ZÜTTEL, MAURON Philippe, KATO Shunsuke, et al. Storage of renewable energy by reduction of CO2 with hydrogen[J]. Chimia, 2015, 69(5): 264-268.
|
| [46] |
LAI Qiwen, PASKEVICIUS Mark, SHEPPARD Drew A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825.
|
| [47] |
XIN Fang, XU Min, HUAI Xiulan, et al. Study on isopropanol-acetone-hydrogen chemical heat pump: Liquid phase dehydrogenation of isopropanol using a reactive distillation column[J]. Applied Thermal Engineering, 2013, 58(1/2): 369-373.
|
| [48] |
姜舒, 纪惜銮, 杨顺, 等. 一种存放细胞冻存袋的冻存盒: CN204362811U[P]. 2015-06-03.
|
|
JIANG Shu, JI Xiluan, YANG Shun, et al. The invention discloses a freeze-storage box for storing cell freeze-storage bags:CN204362811U[P]. 2015-06-03.
|
| [49] |
KLINSODA Itikorn, PIUMSOMBOON Pornpote. Isopropanol-acetone-hydrogen chemical heat pump: A demonstration unit[J]. Energy Conversion and Management, 2007, 48(4): 1200-1207.
|
| [50] |
DELANCEY George B, KOVENKLIOGLU Suphan, RITTER Arthur B, et al. Cyclohexane dehydrogenation for thermochemical energy conversion[J]. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(4): 639-645.
|
| [105] |
关佩琳, 赵娟. 一种碳硼烷改性有机硅树脂的制备及其耐热性能[J]. 材料科学与工程学报, 2021, 39(2): 311-316.
|
|
GUAN Peilin, ZHAO Juan. Preparation and heat-resistance of carborane modified silicone resin[J]. Journal of Materials Science and Engineering, 2021, 39(2): 311-316.
|
| [106] |
黄鹏. 有机硅树脂涂层碳纤织物在高温下热力化学耦合分析[D]. 天津: 天津工业大学, 2022.
|
|
HUANG Peng. Thermo-chemical coupling analysis of organosilicone resin coated carbon fiber fabric at high temperature[D]. Tianjin: Tiangong University, 2022.
|
| [107] |
赵华, 贺辛亥, 王宽喜. 酚醛树脂及其复合材料研究现状[J]. 科技信息, 2009(21): 48-49.
|
|
ZHAO Hua, HE Xinhai, WANG Kuanxi. Developing trends of phenolic resin abboad[J]. Science & Technology Information, 2009(21): 48-49.
|
| [108] |
梁瑜, 郭亚林, 张祎. 固体火箭发动机喷管用树脂基烧蚀防热材料研究进展[J]. 宇航材料工艺, 2017, 47(2): 1-4, 13.
|
|
LIANG Yu, GUO Yalin, ZHANG Yi. Progress of ablative polymer composite for solid rocket motor nozzle[J]. Aerospace Materials & Technology, 2017, 47(2): 1-4, 13.
|
| [109] |
CHENG Haiming, FAN Zihao, HONG Changqing, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106313.
|
| [110] |
WANG Hebing, QUAN Xiandong, YIN Lianhua, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107022.
|
| [111] |
时圣波, 梁军, 刘志刚, 等. 高硅氧/酚醛复合材料烧蚀环境下的吸热机理[J]. 固体火箭技术, 2013, 36(1): 113-118.
|
|
SHI Shengbo, LIANG Jun, LIU Zhigang, et al. Endothermic mechanism of silica/phenolic composite under ablative environment[J]. Journal of Solid Rocket Technology, 2013, 36(1): 113-118.
|
| [112] |
LI Jiang, XI Kun, Xiang LYU, et al. Characteristics and formation mechanism of compact/porous structures in char layers of EPDM insulation materials[J]. Carbon, 2018, 127: 498-509.
|
| [51] |
张新荣, 史鹏飞, 刘春涛. 甲醇水蒸气重整制氢Cu/ZnO/Al2O3催化剂的研究[J]. 燃料化学学报, 2003, 31(3): 284-288.
|
|
ZHANG Xinrong, SHI Pengfei, LIU Chuntao. A study on Cu/ZnO/Al2O3 catalysts for hydrogen production by steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2003, 31(3): 284-288.
|
| [52] |
王胜年, 王树东, 吴迪镛,等. 甲醇自热重整制氢反应分析[J]. 燃料化学学报, 2001, 29(3): 238-242.
|
|
WANG Shengnian, WANG Shudong, WU Diyong, et al. Analysis of autothermal reformer of H2 production for proton exchange membrane fuel cell vehicles[J]. Journal of Fuel Chemistry and Technology, 2001, 29(3): 238-242.
|
| [53] |
许达, 刘启斌, 隋军, 等. 太阳能与甲醇热化学互补的分布式能源系统研究[J]. 工程热物理学报, 2013, 34(9): 1601-1605.
|
|
XU Da, LIU Qibin, SUI Jun, et al. Research on distributed energy system with solar-methanol thermochemical hybridization[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1601-1605.
|
| [54] |
翟彦青, 唐旭东, 徐新,等. Au-NiO/TiO2催化剂上甲醇自热重整和水蒸汽重整制氢的比较研究[J]. 北京石油化工学院学报, 2010, 18(2): 1-5.
|
|
ZHAI Yanqing, TANG Xudong, XU Xin, et al. Production of hydrogen via autothermal reforming and steam reforming of methanol on Au-NiO/TiO2 catalyst[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2010, 18(2): 1-5.
|
| [55] |
ERVIN Guy. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61.
|
| [56] |
YUAN Qinyuan, GU Rong, DING Jing, et al. Heat transfer and energy storage performance of steam methane reforming in a tubular reactor[J]. Applied Thermal Engineering, 2017, 125: 633-643.
|
| [57] |
BARBIERI Giuseppe, MARIGLIANO Giuseppe, PERRI Giovanni, et al. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: Methane steam reforming[J]. Industrial & Engineering Chemistry Research, 2001, 40(9): 2017-2026.
|
| [58] |
HUANG Longchao, CHEN Dengke, XIE Degang, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron[J]. Nature Materials, 2023, 22(6): 710-716.
|
| [113] |
PAUL A, VENUGOPAL S, BINNER J G P, et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation[J]. Journal of the European Ceramic Society, 2013, 33(2): 423-432.
|
| [114] |
WINDHORST Torsten, BLOUNT Gordon. Carbon-carbon composites: A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1): 11-15.
|
| [115] |
武七德, 童元丰. 碳化硅材料的氧化及抗氧化研究[J]. 陶瓷科学与艺术, 2002, 36(1): 7-13.
|
|
WU Qide, TONG Yuanfeng. Study on the oxidation mechanism and the resistance to oxidation of SiC materials[J]. Ceramics Engineering, 2002, 36 (1): 7-13.
|
| [116] |
付前刚, 石慧伦. C/C复合材料表面耐高温抗氧化硅基陶瓷涂层研究进展[J]. 航空材料学报, 2021, 41(3): 1-10.
|
|
FU Qiangang, SHI Huilun. Research progress of high temperature and oxidation resistant silicon based ceramic coatings on C/C composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 1-10.
|
| [117] |
ROY J, CHANDRAS SANTANU DA S, et al. Oxidation behavior of silicon carbide—A review[J]. Reviews on Advanced Materials Science, 2014, 38(1): 29-39.
|
| [118] |
齐哲, 郎旭东, 赵春玲, 等. SiC/SiC复合材料失效行为研究进展[J]. 航空材料学报, 2021, 41(3): 25-35.
|
|
QI Zhe, LANG Xudong, ZHAO Chunling, et al. Research progress on the failure behavior of SiC/SiC composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 25-35.
|
| [119] |
王少雷, 李红, 任慕苏, 等. ZrC-SiC-C/C复合材料的制备及其烧蚀性能[J]. 复合材料学报, 2017, 34(5): 1040-1047.
|
|
WANG Shaolei, LI Hong, REN Musu, et al. Fabrication and ablation performances of ZrC-SiC-C/C composites[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1040-1047.
|
| [120] |
王德文, 沈昊东, 王丽, 等. 碳/碳-碳化硅复合材料在高超音速射流中性能研究[J]. 兵器装备工程学报, 2023, 44(6): 299-303.
|
| [59] |
WANG Ganzhou, MITSOS Alexander, MARQUARDT Wolfgang. Conceptual design of ammonia-based energy storage system: System design and time-invariant performance[J]. AIChE Journal, 2017, 63(5): 1620-1637.
|
| [60] |
李鹏. 空预器热风吹扫防堵技术关键点的深度剖析:2021年中国电机工程学会论文集[C]. 2021.
|
|
LI Peng. Deep analysis on key points of hot air blowing and blocking prevention technology for air preheater: 2021 Chinese Society of Electrical Engineering Annual Conference Proceeding[C]. 2021.
|
| [61] |
范芸珠, 曹发海. 硫酸铵热分解反应动力学研究[J]. 高校化学工程学报, 2011, 25(2): 341-346.
|
|
FAN Yunzhu, CAO Fahai. Thermal decomposition kinetics of ammonium sulfate[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 341-346.
|
| [62] |
杨一凡. 氨制冷技术的应用现状及发展趋势[J]. 制冷学报, 2007, 28(4): 12-19.
|
|
YANG Yifan. Application and development of ammonia refrigeration technology[J]. Journal of Refrigeration, 2007, 28(4): 12-19.
|
| [63] |
L’VOV Boris V, NOVICHIKHIN Alexander V, DYAKOV Alexey O. Mechanism of thermal decomposition of magnesium hydroxide[J]. Thermochimica Acta, 1998, 315(2): 135-143.
|
| [64] |
王涛. 氧化钙/氢氧化钙热化学储热系统性能强化及反应特性理论与实验研究[D]. 上海: 上海交通大学, 2020.
|
|
WANG Tao. Theoretical and experimental study on performance enhancement and reaction charcteristics of CaO/Ca(OH)2 thermochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2020.
|
| [65] |
SHKATULOV Alexandr, KRIEGER Tamara, ZAIKOVSKII Vladimir, et al. Doping magnesium hydroxide with sodium nitrate: A new approach to tune the dehydration reactivity of heat-storage materials[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19966-19977.
|
| [66] |
CHEN Dun, GAO Xiang, DOLLIMORE David. The application of non-isothermal methods of kinetic analysis to the decomposition of calcium hydroxide[J]. Thermochimica Acta, 1993, 215: 65-82.
|
| [120] |
WANG Dewen, SHEN Haodong, WANG Li, et al. Research on the properties of carbon /carbon-silicon carbide (C/C-SiC) composites in hypersonic jets[J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 299-303.
|
| [121] |
Brian N COX, Frank W ZOK. Advances in ceramic composites reinforced by continuous fibers[J]. Current Opinion in Solid State and Materials Science, 1996, 1(5): 666-673.
|
| [122] |
LIU Yin, ZHANG Zhifan, HALLORAN John, et al. Yttrium aluminum garnet fibers from metalloorganic precursors[J]. Journal of the American Ceramic Society, 1998, 81(3): 629-645.
|
| [123] |
TANG Sufang, DENG Jingyi, WANG Shijun, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering: A, 2007, 465(1/2): 1-7.
|
| [124] |
杨曦凝. ZrB2-SiC陶瓷高温氧化机理及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
|
|
YANG Xining. Study on oxidation mechanism and mechanical properties of ZrB2-SiC ceramic at high temperature[D]. Harbin: Harbin Institute of Technology, 2008.
|
| [125] |
李学英, 张幸红, 韩杰才, 等. Y2O3掺杂ZrB2-SiC基超高温陶瓷的抗烧蚀性能[J]. 稀有金属材料与工程, 2011, 40(5): 820-823.
|
|
LI Xueying, ZHANG Xinghong, HAN Jiecai, et al. Ablation resistance behavior of ZrB2-SiC ultra-high temperature ceramics with Y2O3 addition[J]. Rare Metal Materials and Engineering, 2011, 40(5): 820-823.
|
| [126] |
FAHRENHOLTZ William G, HILMAS Gregory E, TALMY Inna G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.
|
| [127] |
GUO Shuqi. Densification of ZrB2-based composites and their mechanical and physical properties: A review[J]. Journal of the European Ceramic Society, 2009, 29(6): 995-1011.
|
| [128] |
梁琦, 肖东, 林慧兴, 等. 电子基板用玻璃/陶瓷复合材料的低温共烧与性能[J]. 现代技术陶瓷, 2017, 38(2): 96-107.
|
|
LIANG Qi, XIAO Dong, LIN Huixing, et al. Low-temperature co-fired and properties of ceramics/glass composites for electronic substrates[J]. Advanced Ceramics, 2017, 38(2): 96-107.
|
| [67] |
MURTHY M S, RAGHAVENDRACHAR P, SRIRAM S V. Thermal decomposition of doped calcium hydroxide for chemical energy storage[J]. Solar Energy, 1986, 36(1): 53-62.
|
| [68] |
DARKWA K. Experimental studies of a thermochemical store for automobile engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1997, 211(5): 347-360.
|
| [129] |
LANDER H, NIXON A C. Endothermic fuels for hypersonic vehicles[J]. Journal of Aircraft, 1971, 8(4): 200-207.
|
| [130] |
WANG Chong, DU Chongpeng, SHANG Jianxuan, et al. A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105867.
|
| [131] |
房振全, 姜书根, 张兴华, 等. 高热沉碳氢喷气燃料吸热反应研究进展[J]. 化学进展, 2023, 35(12): 1895-1910.
|
|
FANG Zhenquan, JIANG Shugen, ZHANG Xinghua, et al. Endothermic reaction of high heat sink hydrocarbon jet fuel[J]. Progress in Chemistry, 2023, 35(12): 1895-1910.
|
| [132] |
顾志华. 乙醇制乙烯技术现状及展望[J]. 化工进展, 2006, 25 (8): 847-851.
|
|
GU Zhihua. Development and perspective of ethylene from ethanol[J]. Chemical Industry and Engineering Progress, 2006, 25(8): 847-851.
|
| [133] |
CARRILLO Alfonso J, José GONZÁLEZ-AGUILAR, ROMERO Manuel, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816.
|