Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6200-6211.DOI: 10.16085/j.issn.1000-6613.2024-1563
• Energy processes and technology • Previous Articles
ZHOU Chenxi1,2(
), YOU Xiaogang1,2, CHEN Jiabin1,2, YANG Libin1,2, ZHOU Xuefei1,2, ZHANG Yalei1,2,3(
)
Received:2024-09-26
Revised:2024-12-08
Online:2025-12-08
Published:2025-11-25
Contact:
ZHANG Yalei
周辰熹1,2(
), 由晓刚1,2, 陈家斌1,2, 杨黎彬1,2, 周雪飞1,2, 张亚雷1,2,3(
)
通讯作者:
张亚雷
作者简介:周辰熹(2000—),男,硕士研究生,研究方向为污水处理资源化、能源化。E-mail:william_zhou@tongji.edu.cn。
基金资助:CLC Number:
ZHOU Chenxi, YOU Xiaogang, CHEN Jiabin, YANG Libin, ZHOU Xuefei, ZHANG Yalei. Current status and prospects of microwave pyrolysis of microalgae[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6200-6211.
周辰熹, 由晓刚, 陈家斌, 杨黎彬, 周雪飞, 张亚雷. 微藻微波热解工艺的现状及前景[J]. 化工进展, 2025, 44(11): 6200-6211.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1563
| 气体类型 | 常规热解产生气体体积分数/% | 微波热解产生气体体积分数/% |
|---|---|---|
| HHV | 13.90MJ/kg | 17.24MJ/kg |
| H2 | 22.81 | 51.78 |
| CH4 | 15.79 | 6.38 |
| CO | 18.38 | 23.13 |
| CO2 | 36.09 | 17.64 |
| C2H6 | 2.42 | 0.46 |
| C2H4 | 1.25 | 0.60 |
| 气体类型 | 常规热解产生气体体积分数/% | 微波热解产生气体体积分数/% |
|---|---|---|
| HHV | 13.90MJ/kg | 17.24MJ/kg |
| H2 | 22.81 | 51.78 |
| CH4 | 15.79 | 6.38 |
| CO | 18.38 | 23.13 |
| CO2 | 36.09 | 17.64 |
| C2H6 | 2.42 | 0.46 |
| C2H4 | 1.25 | 0.60 |
| 微藻种类 | 微波吸收剂 | 催化剂 (催化剂与原料比例) | 温度/℃ | 单位质量微波功率/W·g-1 | 惰性气氛 | 生物油质量分数/% | 生物炭质量分数/% | 生物气质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| Chlorella | SiC | 磷掺杂生物炭(1∶2) | <700 | — | — | 约50 | 约15 | 约30 | [ |
| Chlorella | Fe3O4 | Fe3O4(1∶4) | 500 | — | N2 | 约52 | 约25 | 约23 | [ |
| Chlorella | 活性炭(AC) | 轮胎(tire)(7∶3) | 约600 | 20 | CO2 | 约30 | 约40 | 约30 | [ |
| Chlorella | SiC | — | 450 | 50 | — | 约55 | 约35 | 约10 | [ |
| Chlorella | 生物炭(bio-char) | — | — | 25 | N2 | 28.6 | 约24 | 约26 | [ |
| Chlorella vulgaris | — | — | — | 75 | N2 | 约23 | 约25 | 约52 | [ |
| Chlorella vulgaris | SiC | 木屑(wood sawdust)(7∶3) | 660 | 33.3 | N2 | 31.4 | 22.3 | 43.7 | [ |
| Chlorella vulgaris | 褐煤焦(lignite char)+Fe3O4 | lignite char+Fe3O4(2∶5) | — | 116.7 | N2 | 约35 | 约20 | 约45 | [ |
| Chlorella vulgaris | AC | 聚氯乙烯(PVC)(9∶1) | 280 | 20 | N2 | 约25 | 约15 | 约60 | [ |
| Chlorella vulgaris | 石墨(graphite) | ZSM-5+graphite(1∶1) | — | — | N2 | 约12 | 约34 | 约54 | [ |
| Chlorella vulgaris | — | 稻草(rice straw)(7∶3) | — | — | N2 | 14.57 | 32.50 | 53.43 | [ |
| Spirulina | SiC | — | 400 | — | — | 约12 | 约8 | 约80 | [ |
| Spirulina | AC | AC(1∶4) | 650 | — | N2 | 约40 | 约25 | 约35 | [ |
| Nannochloropsis | SiC | HZSM-5(1∶1) | 550 | 50 | — | 约42 | 约15 | 约43 | [ |
| Nannochloropsis sp. | SiC | HZSM-5(1∶2) | 550 | 50 | — | 约24 | 约24 | 约52 | [ |
| Scenedesmus almeriensis | 生物炭 | — | 400 | 62.5 | He | 23.1 | 32.4 | 44.5 | [ |
| 微藻种类 | 微波吸收剂 | 催化剂 (催化剂与原料比例) | 温度/℃ | 单位质量微波功率/W·g-1 | 惰性气氛 | 生物油质量分数/% | 生物炭质量分数/% | 生物气质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| Chlorella | SiC | 磷掺杂生物炭(1∶2) | <700 | — | — | 约50 | 约15 | 约30 | [ |
| Chlorella | Fe3O4 | Fe3O4(1∶4) | 500 | — | N2 | 约52 | 约25 | 约23 | [ |
| Chlorella | 活性炭(AC) | 轮胎(tire)(7∶3) | 约600 | 20 | CO2 | 约30 | 约40 | 约30 | [ |
| Chlorella | SiC | — | 450 | 50 | — | 约55 | 约35 | 约10 | [ |
| Chlorella | 生物炭(bio-char) | — | — | 25 | N2 | 28.6 | 约24 | 约26 | [ |
| Chlorella vulgaris | — | — | — | 75 | N2 | 约23 | 约25 | 约52 | [ |
| Chlorella vulgaris | SiC | 木屑(wood sawdust)(7∶3) | 660 | 33.3 | N2 | 31.4 | 22.3 | 43.7 | [ |
| Chlorella vulgaris | 褐煤焦(lignite char)+Fe3O4 | lignite char+Fe3O4(2∶5) | — | 116.7 | N2 | 约35 | 约20 | 约45 | [ |
| Chlorella vulgaris | AC | 聚氯乙烯(PVC)(9∶1) | 280 | 20 | N2 | 约25 | 约15 | 约60 | [ |
| Chlorella vulgaris | 石墨(graphite) | ZSM-5+graphite(1∶1) | — | — | N2 | 约12 | 约34 | 约54 | [ |
| Chlorella vulgaris | — | 稻草(rice straw)(7∶3) | — | — | N2 | 14.57 | 32.50 | 53.43 | [ |
| Spirulina | SiC | — | 400 | — | — | 约12 | 约8 | 约80 | [ |
| Spirulina | AC | AC(1∶4) | 650 | — | N2 | 约40 | 约25 | 约35 | [ |
| Nannochloropsis | SiC | HZSM-5(1∶1) | 550 | 50 | — | 约42 | 约15 | 约43 | [ |
| Nannochloropsis sp. | SiC | HZSM-5(1∶2) | 550 | 50 | — | 约24 | 约24 | 约52 | [ |
| Scenedesmus almeriensis | 生物炭 | — | 400 | 62.5 | He | 23.1 | 32.4 | 44.5 | [ |
| 催化剂或共热解物质 | 微藻种类 | 用途 | 参考文献 |
|---|---|---|---|
| Fe3O4+褐煤焦 | Chlorella vulgaris | 促进微波吸收、优化产品的组分和得率 | [ |
| 活性炭等 | Chlorella vulgaris | 提高热解温度、减少升温时间等 | [ |
| PVC | Chlorella vulgaris | 提高生物油氢含量 | [ |
| 稻草 | Chlorella Vulgaris | 对生物油有协同作用,对生物气有负向作用 | [ |
| SiC+TiO2 | Chlorella vulgaris | 不同催化剂配比影响生物油的得率和组成 | [ |
| 蔗渣(sugarcane bagasse)+CuO | Chlorella vulgaris | 改善了热解特性,提高了生物油得率 | [ |
| ZSM-5+石墨 | Chlorella vulgaris | 筛选了不同催化剂和微波吸收剂等的最佳用量 | [ |
| WS+AC/SiC | Chlorella vulgaris | 不同比例对产物成分有影响 | [ |
| 生物炭+SiC | Chlorella | 不同催化剂添加量对产物分布和成分有影响 | [ |
AC Fe3O4 | Chlorella和Spirulina | 提高生物油和含氮脂肪族得率、促进含氮芳烃的形成 | [ |
| 轮胎 | Chlorella | 不同催化剂添加量对产物分布和成分有影响 | [ |
| 石墨+Fe2O3 | Dunaliella salina | 确定了不同添加量和混合比例下的微波催化热解行为及动力学特征 | [ |
AC+Na2CO3 AC+CaCO3 | Dunaliella salina | 确定了不同添加量和混合比例下的微波催化热解行为及动力学特征 | [ |
| Na2CO3 | Spirulina | 降低生物油中氮含量 | [ |
AC Fe3O4 | Chlorella和Spirulina | 提高了生物油和含氮脂肪族的得率、促进了含氮芳烃的形成 | [ |
| HZSM-5 | Nannochloropsis sp. | 生物油得率降低,炭得率、气得率提高 | [ |
| 催化剂或共热解物质 | 微藻种类 | 用途 | 参考文献 |
|---|---|---|---|
| Fe3O4+褐煤焦 | Chlorella vulgaris | 促进微波吸收、优化产品的组分和得率 | [ |
| 活性炭等 | Chlorella vulgaris | 提高热解温度、减少升温时间等 | [ |
| PVC | Chlorella vulgaris | 提高生物油氢含量 | [ |
| 稻草 | Chlorella Vulgaris | 对生物油有协同作用,对生物气有负向作用 | [ |
| SiC+TiO2 | Chlorella vulgaris | 不同催化剂配比影响生物油的得率和组成 | [ |
| 蔗渣(sugarcane bagasse)+CuO | Chlorella vulgaris | 改善了热解特性,提高了生物油得率 | [ |
| ZSM-5+石墨 | Chlorella vulgaris | 筛选了不同催化剂和微波吸收剂等的最佳用量 | [ |
| WS+AC/SiC | Chlorella vulgaris | 不同比例对产物成分有影响 | [ |
| 生物炭+SiC | Chlorella | 不同催化剂添加量对产物分布和成分有影响 | [ |
AC Fe3O4 | Chlorella和Spirulina | 提高生物油和含氮脂肪族得率、促进含氮芳烃的形成 | [ |
| 轮胎 | Chlorella | 不同催化剂添加量对产物分布和成分有影响 | [ |
| 石墨+Fe2O3 | Dunaliella salina | 确定了不同添加量和混合比例下的微波催化热解行为及动力学特征 | [ |
AC+Na2CO3 AC+CaCO3 | Dunaliella salina | 确定了不同添加量和混合比例下的微波催化热解行为及动力学特征 | [ |
| Na2CO3 | Spirulina | 降低生物油中氮含量 | [ |
AC Fe3O4 | Chlorella和Spirulina | 提高了生物油和含氮脂肪族的得率、促进了含氮芳烃的形成 | [ |
| HZSM-5 | Nannochloropsis sp. | 生物油得率降低,炭得率、气得率提高 | [ |
| [1] | LU Haiying, XIE Ruiyan, ALMOALLIM Hesham S, et al. Utilization of the Nannochloropsis microalgae biochar prepared via microwave assisted pyrolysis on the mixed biomass fuel pellets[J]. Environmental Research, 2023, 231: 116078. |
| [2] | FOONG Shin Ying, LIEW Rock Keey, YANG Yafeng, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions[J]. Chemical Engineering Journal, 2020, 389: 124401. |
| [3] | ISAHAK Wan Nor Roslam Wan, HISHAM Mohamed W M, YARMO Mohd Ambar, et al. A review on bio-oil production from biomass by using pyrolysis method[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5910-5923. |
| [4] | HOANG Anh Tuan, SIROHI Ranjna, PANDEY Ashok, et al. Biofuel production from microalgae: Challenges and chances[J]. Phytochemistry Reviews, 2023, 22(4): 1089-1126. |
| [5] | CHEW Kit Wayne, Jing Ying YAP, SHOW Pau Loke, et al. Microalgae biorefinery: High value products perspectives[J]. Bioresource Technology, 2017, 229: 53-62. |
| [6] | SARDI Bambang, RACHMAWATI Hanif, MAULANA Triyaldi Fakhry, et al. Advanced bio-oil production from a mixture of microalgae and low rank coal using microwave assisted pyrolysis[J]. Bioresource Technology Reports, 2023, 21: 101367. |
| [7] | HOU Cheng, ZHENG Xinnan, SONG Yuanbo, et al. Influence of polyethylene chain structure on microwave-assisted co-pyrolysis of polyethylene and microalgae: Nitrogen reduction and oxygen increase effects in bio-oil[J]. Fuel, 2024, 374: 132463. |
| [8] | ABUBAKAR Zubairu, SALEMA Arshad Adam, Farid Nasir ANI. A new technique to pyrolyse biomass in a microwave system: Effect of stirrer speed[J]. Bioresource Technology, 2013, 128: 578-585. |
| [9] | JAHIRUL Mohammad I, RASUL Mohammad G, CHOWDHURY Ashfaque Ahmed, et al. Biofuels production through biomass pyrolysis—A technological review[J]. Energies, 2012, 5(12): 4952-5001. |
| [10] | YANG Changyan, LI Rui, ZHANG Bo, et al. Pyrolysis of microalgae: A critical review[J]. Fuel Processing Technology, 2019, 186: 53-72. |
| [11] | PAHNILA Mika, KOSKELA Aki, SULASALMI Petri, et al. A review of pyrolysis technologies and the effect of process parameters on biocarbon properties[J]. Energies, 2023, 16(19): 6936. |
| [12] | LIEW Rock Keey, Wai Lun NAM, CHONG Min Yee, et al. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications[J]. Process Safety and Environmental Protection, 2018, 115: 57-69. |
| [13] | SEKAR Manigandan, MATHIMANI Thangavel, ALAGUMALAI Avinash, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil—Bottlenecks and scope[J]. Fuel, 2021, 283: 119190. |
| [14] | CHEN Chunxiang, ZHAO Shiyi, QIU Hongfu, et al. Characterization and bio-oil analysis of microalgae and waste tires by microwave catalytic co-pyrolysis[J]. Energy, 2024, 302: 131819. |
| [15] | JACOBSON Kathlene, MAHERIA Kalpana C, KUMAR DALAI Ajay. Bio-oil valorization: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 91-106. |
| [16] | XIA Changlei, PATHY Abhijeet, PARAMASIVAN Balasubramanian, et al. Comparative study of pyrolysis and hydrothermal liquefaction of microalgal species: Analysis of product yields with reaction temperature[J]. Fuel, 2022, 311: 121932. |
| [17] | CORREA Diego F, BEYER Hawthorne L, POSSINGHAM Hugh P, et al. Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries[J]. Energy, 2021, 215: 119033. |
| [18] | FIGUEROA-TORRES Gonzalo M, THEODOROPOULOS Constantinos. Techno-economic analysis of a microalgae-based biorefinery network for biofuels and value-added products[J]. Bioresource Technology Reports, 2023, 23: 101524. |
| [19] | ROLES John, YARNOLD Jennifer, WOLF Juliane, et al. Charting a development path to deliver cost competitive microalgae-based fuels[J]. Algal Research, 2020, 45: 101721. |
| [20] | MAO Shudan, FU Li, YIN Chengliang, et al. The role of electrochemical biosensors in SARS-CoV-2 detection: A bibliometrics-based analysis and review[J]. RSC Advances, 2022, 12(35): 22592-22607. |
| [21] | CHEN Chaomei. CiteSpaceⅡ: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. |
| [22] | NAYAK Sheetal N, BHASIN Chandra Prakash, NAYAK Milap G. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems[J]. Renewable Energy, 2019, 143: 1366-1387. |
| [23] | LI Jinglin, LIN Li, JU Tongyao, et al. Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113979. |
| [24] | ROBINSON J P, KINGMAN S W, BARRANCO R, et al. Microwave pyrolysis of wood pellets[J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 459-463. |
| [25] | ROBINSON John, BINNER Eleanor, VALLEJO Daniel Beneroso, et al. Unravelling the mechanisms of microwave pyrolysis of biomass[J]. Chemical Engineering Journal, 2022, 430: 132975. |
| [26] | ZHANG Yaning, CHEN Paul, LIU Shiyu, et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review[J]. Bioresource Technology, 2017, 230: 143-151. |
| [27] | HUANG Yu-Fong, CHIUEH Pei-Te, Shang-Lien LO. A review on microwave pyrolysis of lignocellulosic biomass[J]. Sustainable Environment Research, 2016, 26(3): 103-109. |
| [28] | FERNÁNDEZ Y, MENÉNDEZ J A. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 316-322. |
| [29] | ZHI Dandan, LI Tian, LI Jinzhe, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B: Engineering, 2021, 211: 108642. |
| [30] | MUSHTAQ Faisal, Ramli MAT, Farid Nasir ANI. A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 555-574. |
| [31] | WANG Nan, TAHMASEBI Arash, YU Jianglong, et al. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass[J]. Bioresource Technology, 2015, 190: 89-96. |
| [32] | HU Xun, GHOLIZADEH Mortaza. Progress of the applications of bio-oil[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110124. |
| [33] | KRISHNAN Radhakrishnan Yedhu, MANIKANDAN Sivasubramanian, SUBBAIYA Ramasamy, et al. Advanced thermochemical conversion of algal biomass to liquid and gaseous biofuels: A comprehensive review of recent advances[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102211. |
| [34] | FERRERA-LORENZO N, FUENTE E, BERMÚDEZ J M, et al. Conventional and microwave pyrolysis of a macroalgae waste from the agar-agar industry. Prospects for bio-fuel production[J]. Bioresource Technology, 2014, 151: 199-206. |
| [35] | SU Guangcan, Hwai Chyuan ONG, CHEAH Mei Yee, et al. Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance, and prospect[J]. Fuel, 2022, 326: 124983. |
| [36] | CHEN Wei-Hsin, LIN Bo-Jhih. Thermochemical conversion of microalgal biomass[M]//Second and Third Generation of Feedstocks. Amsterdam: Elsevier, 2019: 345-382. |
| [37] | TRIPATHI Manoj, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. |
| [38] | FERMOSO Javier, PIZARRO Patricia, CORONADO Juan M, et al. Advanced biofuels production by upgrading of pyrolysis bio-oil[J]. WIREs Energy and Environment, 2017, 6(4): e245. |
| [39] | BHOI P R, OUEDRAOGO A S, S V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
| [40] | PHUSUNTI Neeranuch, CHEIRSILP Benjamas. Integrated protein extraction with bio-oil production for microalgal biorefinery[J]. Algal Research, 2020, 48: 101918. |
| [41] | DEVAUX Jason, Caroline BARRÈRE-MANGOTE, GIUSTI Pierre, et al. Online supercritical fluid chromatography hyphenated to fourier transform ion cyclotron resonance mass spectrometry with quadrupole detection for microalgae bio-oil characterization[J]. Analytical Chemistry, 2024, 96(38): 15134-15141. |
| [42] | ZHANG Chenting, ZHANG Zhanming, ZHANG Lijun, et al. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range[J]. Bioresource Technology, 2020, 304: 123002. |
| [43] | HADIYA Vishal, POPAT Kartik, VYAS Shaili, et al. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives[J]. Bioresource Technology, 2022, 355: 127303. |
| [44] | SU Guangcan, Hwai Chyuan ONG, MOHD ZULKIFLI Nurin Wahidah, et al. Valorization of animal manure via pyrolysis for bioenergy: A review[J]. Journal of Cleaner Production, 2022, 343: 130965. |
| [45] | MOHIT Aggarwal, REMYA Neelancherry. Optimization of biochar production from greywater grown polyculture microalgae using microwave pyrolysis[J]. Bioresource Technology, 2023, 388: 129666. |
| [46] | BENEROSO D, BERMÚDEZ J M, ARENILLAS A, et al. Microwave pyrolysis of microalgae for high syngas production[J]. Bioresource Technology, 2013, 144: 240-246. |
| [47] | GRACIANO José E A, CHACHUAT Benoît, ALVES Rita M B. Enviro-economic assessment of thermochemical polygeneration from microalgal biomass[J]. Journal of Cleaner Production, 2018, 203: 1132-1142. |
| [48] | EBHODAGHE Samuel Ogbeide, IMANAH Ojeaga Evans, NDIBE Henry. Biofuels from microalgae biomass: A review of conversion processes and procedures[J]. Arabian Journal of Chemistry, 2022, 15(2): 103591. |
| [49] | DU Zhenyi, LI Yecong, WANG Xiaoquan, et al. Microwave-assisted pyrolysis of microalgae for biofuel production[J]. Bioresource Technology, 2011, 102(7): 4890-4896. |
| [50] | MENÉNDEZ J A, JUÁREZ-PÉREZ E J, RUISÁNCHEZ E, et al. Ball lightning plasma and plasma arc formation during the microwave heating of carbons[J]. Carbon, 2011, 49(1): 346-349. |
| [51] | HONG Yu, CHEN Wanru, LUO Xiang, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237: 47-56. |
| [52] | CHO Dong-Wan, KWON Eilhann E, SONG Hocheol. Use of carbon dioxide as a reaction medium in the thermo-chemical process for the enhanced generation of syngas and tuning adsorption ability of biochar[J]. Energy Conversion and Management, 2016, 117: 106-114. |
| [53] | SU Zheyang, JIN Kuangli, WU Jiabo, et al. Phosphorus doped biochar as a deoxygenation and denitrogenation catalyst for ex-situ upgrading of vapors from microwave-assisted co-pyrolysis of microalgae and waste cooking oil[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105538. |
| [54] | HUANG Feng, TAHMASEBI Arash, MALIUTINA Kristina, et al. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways[J]. Bioresource Technology, 2017, 245: 1067-1074. |
| [55] | FANG Shiwen, GU Wenlu, DAI Minquan, et al. A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres[J]. Bioresource Technology, 2018, 250: 821-827. |
| [56] | BORGES Fernanda Cabral, XIE Qinglong, MIN Min, et al. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst[J]. Bioresource Technology, 2014, 166: 518-526. |
| [57] | HU Zhifeng, MA Xiaoqian, CHEN Chunxiang. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae[J]. Bioresource Technology, 2012, 107: 487-493. |
| [58] | CHEN Lin, YU Zhaosheng, XU Hao, et al. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives[J]. Bioresource Technology, 2019, 273: 34-39. |
| [59] | DAI Minquan, XU Hao, YU Zhaosheng, et al. Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride[J]. Applied Thermal Engineering, 2018, 136: 9-15. |
| [60] | CHEN Chunxiang, ZENG Tianyang, HE Jingqi, et al. Microwave pyrolysis characteristics and product of Chlorella vulgaris under compound additives and optimization by Box-Behnken design[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106762. |
| [61] | WEI Dening, CHEN Chunxiang, HUANG Xiaodong, et al. Products and pathway analysis of rice straw and Chlorella vulgaris by microwave-assisted co-pyrolysis[J]. Journal of the Energy Institute, 2023, 107: 101182. |
| [62] | XIE Qinglong, ADDY Min, LIU Shiyu, et al. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production[J]. Fuel, 2015, 160: 577-582. |
| [63] | MATHIMANI Thangavel, BALDINELLI Arianna, RAJENDRAN Karthik, et al. Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps[J]. Journal of Cleaner Production, 2019, 208: 1053-1064. |
| [64] | CHOO Min-Yee, Lee Eng OI, LING Tau Chuan, et al. Conversion of microalgae biomass to biofuels[M]//Microalgae Cultivation for Biofuels Production. Amsterdam: Elsevier, 2020: 149-161. |
| [65] | DU Zhenyi, HU Bing, MA Xiaochen, et al. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids[J]. Bioresource Technology, 2013, 130: 777-782. |
| [66] | HONG Yu, XIE Chengrui, CHEN Wanru, et al. Kinetic study of the pyrolysis of microalgae under nitrogen and CO2 atmosphere[J]. Renewable Energy, 2020, 145: 2159-2168. |
| [67] | SAIT Hani H, SALEMA Arshad Adam. Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies[J]. Fuel, 2015, 161: 239-247. |
| [68] | MUTSENGERERE S, CHIHOBO C H, MUSADEMBA D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 328-336. |
| [69] | HU Zhiquan, ZHENG Yang, YAN Feng, et al. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization[J]. Energy, 2013, 52: 119-125. |
| [70] | KALOGIANNIS K G, STEFANIDIS S D, KARAKOULIA S A, et al. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2018, 238: 346-357. |
| [71] | STATE Razvan Nicolae, VOLCEANOV Adrian, MULEY Pranjali, et al. A review of catalysts used in microwave assisted pyrolysis and gasification[J]. Bioresource Technology, 2019, 277: 179-194. |
| [72] | LEI Hanwu, REN Shoujie, JULSON James. The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis[J]. Energy & Fuels, 2009, 23(6): 3254-3261. |
| [73] | AYSU Tevfik, Oluwafunmilola OLA, Mercedes MAROTO-VALER M, et al. Effects of titania based catalysts on in situ pyrolysis of Pavlova microalgae[J]. Fuel Processing Technology, 2017, 166: 291-298. |
| [74] | LIU Shiyu, XIE Qinglong, ZHANG Bo, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresource Technology, 2016, 204: 164-170. |
| [75] | ZHU Lei, ZHANG Yayun, LEI Hanwu, et al. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis[J]. Sustainable Energy & Fuels, 2018, 2(8): 1781-1790. |
| [76] | ARPIA Arjay A, CHEN Wei-Hsin, LAM Su Shiung, et al. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review[J]. Chemical Engineering Journal, 2021, 403: 126233. |
| [77] | ANDERSSON Viktor, HEYNE Stefan, HARVEY Simon, et al. Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment[J]. International Journal of Energy Research, 2020, 44(13): 10860-10877. |
| [78] | LAM Su Shiung, WAN MAHARI Wan Adibah, JUSOH Ahmad, et al. Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties[J]. Journal of Cleaner Production, 2017, 147: 263-272. |
| [79] | ZHANG Yaning, CUI Yunlei, LIU Shiyu, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production—A review[J]. Bioresource Technology, 2020, 297: 122480. |
| [80] | CHEN Chunxiang, QI Qianhao, ZENG Tianyang, et al. Effect of compound additive on microwave-assisted pyrolysis characteristics and products of Chlorella vulgaris [J]. Journal of the Energy Institute, 2021, 98: 188-198. |
| [81] | CHEN Chunxiang, QIU Song, LING Hongjian, et al. Effect of transition metal oxide on microwave co-pyrolysis of sugarcane bagasse and Chlorella vulgaris for producing bio-oil[J]. Industrial Crops and Products, 2023, 199: 116756. |
| [82] | CHEN Chunxiang, QI Qianhao, HUANG Dengchang, et al. Effect of additive mixture on microwave-assisted catalysis pyrolysis of microalgae[J]. Energy, 2021, 229: 120752. |
| [83] | CHEN Chunxiang, BU Xiaoyan, QI Qianhao, et al. Experimental study on microwave pyrolysis of Dunaliella Salina using compound additives[J]. BioEnergy Research, 2021, 14(4): 1300-1311. |
| [84] | XU Kang, LI Jun, ZENG Kuo, et al. The characteristics and evolution of nitrogen in bio-oil from microalgae pyrolysis in molten salt[J]. Fuel, 2023, 331: 125903. |
| [85] | BENEROSO D, MONTI T, KOSTAS E T, et al. Microwave pyrolysis of biomass for bio-oil production: Scalable processing concepts[J]. Chemical Engineering Journal, 2017, 316: 481-498. [86] ARAVINDS, SenthilKUMARP, KUMARNikhilS, et al. Conversion of green algal biomass into bioenergy by pyrolysis.A review[J]. Environmental Chemistry Letters, 2020, 18(3): 829-849. |
| [86] | ARAVIND S, Senthil KUMAR P, KUMAR Nikhil S, et al. Conversion of green algal biomass into bioenergy by pyrolysis. A review[J]. Environmental Chemistry Letters, 2020, 18(3): 829-849. |
| [87] | SURIAPPARAO Dadi V, PRADEEP N, VINU R. Bio-oil production from Prosopis juliflora via microwave pyrolysis[J]. Energy & Fuels, 2015, 29(4): 2571-2581. |
| [88] | KUMAR Manish, SUN Yuqing, RATHOUR Rashmi, et al. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges[J]. Science of The Total Environment, 2020, 716: 137116. |
| [1] | HONG Kang, ZHANG Chong, MA Hongli, SUN Yongrong, JIANG Liqun, BAO Guirong. Research progress of biomass hard charcoal as an anode material for sodium-ion batteries [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 340-349. |
| [2] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [3] | ZHOU Ying, BAI Baohua, PU Tian, ZHOU Enze, HU Jianqing, ZHANG Songlin, ZHOU Hongjun, XU Chunming. Construction and demonstration of net-zero industrial parks [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4282-4286. |
| [4] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| [5] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [6] | WEI Zhiqiang, SUN Lili. Current status and challenges of ethanol production technology from industrial carbon-rich gas fermentation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2563-2576. |
| [7] | LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641. |
| [8] | XU Zhenhao, YI Zixiao, ZENG Chen, WANG Yuchen, YAN Kai. Recent advance on the conversion and upgrading of biomass-derived platform molecules [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2642-2654. |
| [9] | SUN Zhongshun, LIU Gen, CHENG Chunyu, LI Meixin, YANG Xiantan, WU Zhiqiang, YANG Bolun. Research progress on thermochemical conversion of biomass to green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2667-2682. |
| [10] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [11] | ZHU Shiyu, HE Yongjin, WANG Mingzi, CHEN Bilian. Research progress on microalgae to fix CO2 in flue gas from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1666-1682. |
| [12] | MAO Yuwei, XUE Zhiliang, HONG Qin, FU Xin, JIN Jianlong, ZHOU Yonggang, HUANG Qunxing. Study on water spray quenching characteristics of waste tire pyrolysis oil-gas [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1263-1274. |
| [13] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, ZHU Zhicheng, QI Shuaijie, GAO Jiawei, LIU Jun, ZHANG Yuyao. Characteristics of heavy metal migration and transformation during co-pyrolysis of sludge with agroforestry wastes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1064-1075. |
| [14] | QI Shuaijie, HUANG Yaji, XU Pengcheng, QI Jingwei, LI Zhiyuan, SHI Hao, ZHAO Jiaqi, GAO Jiawei, LIU Jun, ZHANG Yuyao. Pyrolysis of waste wood building formwork and typical biomass: comparison of product distribution and properties [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1120-1128. |
| [15] | TIAN Xu, SHAO Jing’ai, JIANG Hao, ZHANG Junjie, CHEN Jianfeng, YANG Haiping, CHEN Hanping. Research progress in aromatics production by biomass pyrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6187-6199. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |