Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6187-6199.DOI: 10.16085/j.issn.1000-6613.2024-1707
• Energy processes and technology • Previous Articles
TIAN Xu1(
), SHAO Jing’ai1,2(
), JIANG Hao1, ZHANG Junjie1, CHEN Jianfeng1, YANG Haiping1, CHEN Hanping1,2
Received:2024-10-24
Revised:2025-01-13
Online:2025-12-08
Published:2025-11-25
Contact:
SHAO Jing’ai
田旭1(
), 邵敬爱1,2(
), 蒋好1, 张俊杰1, 陈剑峰1, 杨海平1, 陈汉平1,2
通讯作者:
邵敬爱
作者简介:田旭(2000—),男,硕士研究生,研究方向为生物质热解制备高价值液体燃料。E-mail:365958561@qq.com。
基金资助:CLC Number:
TIAN Xu, SHAO Jing’ai, JIANG Hao, ZHANG Junjie, CHEN Jianfeng, YANG Haiping, CHEN Hanping. Research progress in aromatics production by biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6187-6199.
田旭, 邵敬爱, 蒋好, 张俊杰, 陈剑峰, 杨海平, 陈汉平. 生物质热解制备芳烃的研究进展[J]. 化工进展, 2025, 44(11): 6187-6199.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1707
| 催化剂 | 含氧化合物 | 烃类总量 | 烯烃 | 芳烃 | 烷烃 |
|---|---|---|---|---|---|
| 无催化剂 | 58.7 | 31.3 | — | — | — |
| Mo-Ni/γ-Al2O3 | 7.2 | 86.4 | 35.3 | 31.4 | 13.8 |
| Mo-Co/γ-Al2O3 | 4.2 | 92.6 | 33.4 | 28.9 | 25.7 |
| 催化剂 | 含氧化合物 | 烃类总量 | 烯烃 | 芳烃 | 烷烃 |
|---|---|---|---|---|---|
| 无催化剂 | 58.7 | 31.3 | — | — | — |
| Mo-Ni/γ-Al2O3 | 7.2 | 86.4 | 35.3 | 31.4 | 13.8 |
| Mo-Co/γ-Al2O3 | 4.2 | 92.6 | 33.4 | 28.9 | 25.7 |
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Sext/m2·g-1 | Vtotal/cm3·g-1 | Vmicro/cm3·g-1 | Vmeso/cm3·g-1 |
|---|---|---|---|---|---|---|
| HZSM-5 | 360.11 | 263.23 | 96.88 | 0.21 | 0.11 | 0.10 |
| N-ZSM-5 | 472.39 | 222.27 | 250.22 | 0.70 | 0.09 | 0.61 |
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Sext/m2·g-1 | Vtotal/cm3·g-1 | Vmicro/cm3·g-1 | Vmeso/cm3·g-1 |
|---|---|---|---|---|---|---|
| HZSM-5 | 360.11 | 263.23 | 96.88 | 0.21 | 0.11 | 0.10 |
| N-ZSM-5 | 472.39 | 222.27 | 250.22 | 0.70 | 0.09 | 0.61 |
| 热解原料 | 反应器 | 催化剂选择 | 催化剂与原料质量比 | 热解温度/℃ | 催化温度/℃ | 芳烃产率/% | 苯在芳烃中的占比/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 竹材 | 固定床 | Zn-P/HZSM-5 | 2∶1 | 450 | 550 | 72.28① | 16.57 | [ |
| 木粉 | Py-GC/MS | 10%Mo/ZSM-5 | 10∶1 | 600 | 600 | 42.68① | — | [ |
| 纤维素 | Py-GC/MS | 改性多级孔ZSM-5 | 20∶1 | 600 | 600 | 42.2① | — | [ |
| 纤维素 | Py-GC/MS | 酸处理ZSM-5 | 1∶1 | 500 | 500 | 40.9① | 24.67 | [ |
| 花生壳 | Py-GC/MS | Zn改性ZSM-5 | 1∶1 | 550 | 550 | 22① | — | [ |
| 微藻 | Py-GC/MS | Cu改性HZSM-5(硅铝比80) | 5∶1 | 550 | 550 | 21.16① | 11.81 | [ |
| 纤维素二糖 | Py-GC/MS | Fe(1.4%)修饰HZSM-5 | 10∶1 | 500 | 500 | 18.20② | 12.12 | [ |
| 杨木木屑 | Py-GC/MS | Fe-Ni/ZSM-5 | 1∶1 | 550 | 550 | 16.82① 62.84mg/g③ | 16 | [ |
| 云南松 | 固定床 | Zn负载HZSM-5 | 2∶1 | 450 | 500 | 14.94① | 7.5 | [ |
| 松木木屑 | Py-GC/MS | Ti(SO4)2-Mo2N/HZSM-5 | 4∶3 | 650 | 650 | 10.92① | 42 | [ |
| 木质素 | 固定床 | 负载3% Fe ZSM-5 | 2∶1 | 600 | 600 | 8.94② | 6.3 | [ |
| 半纤维/素 | 非原位固定床 | 负载3% Fe ZSM-5 | 2∶1 | 600 | 600 | 6.77① | 33 | [ |
| 玉米秸秆 | Py-GC/MS | Zn/ZSM-5(硅铝比40) | 1∶1 | 500 | 500 | 183mg/g③ | 15.4 | [ |
| 樟木 | Py-GC/MS | 微介孔ZSM-5 | 4∶1 | 600 | 600 | 91.84mg/g③ | 12.82 | [ |
| 玉米秸秆 | Py-GC/MS | Fe浸渍HZSM-5 | 1∶1 | 800 | 800 | 25.43mg/g③ | — | [ |
玉米秸秆/HDPE 1∶1 | TG-MS-FTIR | Cu改性HZSM-5 | 1∶1 | 550 | 550 | 59.82① | — | [ |
| 木质素/LDPE1∶3 | 管式炉 | Cu2O/HZSM-5(5%) | 1∶2 | 700 | 700 | 50.39① | 13 | [ |
| 木耳菌渣/废聚烯烃 1∶1 | 固定床 | Al2O3/ZSM-51∶1 | 1∶1 | 600 | 600 | 63.11④ | — | [ |
| 木屑 | 热探针热解装置 | ZSM-5/CaO4∶1 | 5∶1 | 600 | 600 | 40① | 8.78 | [ |
| 污水浮渣/玉米秸秆 2∶1 | 微波热解固定床 | CaO/HZSM-51∶4 | 1∶1 | 550 | 550 | 35.77① | — | [ |
| 水稻秸秆/PVC | Py-GC/MS | CaO/HZSM-5 | 1∶1 | 500 | 500 | 34.34④ | — | [ |
竹渣/废轮胎 1∶4 | 固定床 | HZSM-5/CaO1∶1 | 2∶1 | 600 | 600 | 33.324① | 10.35 | [ |
竹材/LDPE 1∶1 | 固定床 | MgO/HZSM-52∶1 | 2∶1 | 450 | 550 | 20.39① | 12.62 | [ |
| 纤维素 | 双催化固定床 | CaO 15% ZSM-5 85% | 2∶1 | 600 | 600 | 13.42② | 15 | [ |
| 油饼 | Py-GC/MS | Org-CaO/NZSM-51∶1 | 6∶1 | 500 | 550 | 75① | — | [ |
| 水葫芦/废轮胎 | 固定床 | 多层MFI纳米片沸石 | 4∶1 | 1000 | 1000 | 69.18④ | — | [ |
| 山茶籽壳 | 管式炉 | N-ZSM-5 | 3∶1 | 500 | 500 | 50.6① | — | [ |
| 热解原料 | 反应器 | 催化剂选择 | 催化剂与原料质量比 | 热解温度/℃ | 催化温度/℃ | 芳烃产率/% | 苯在芳烃中的占比/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 竹材 | 固定床 | Zn-P/HZSM-5 | 2∶1 | 450 | 550 | 72.28① | 16.57 | [ |
| 木粉 | Py-GC/MS | 10%Mo/ZSM-5 | 10∶1 | 600 | 600 | 42.68① | — | [ |
| 纤维素 | Py-GC/MS | 改性多级孔ZSM-5 | 20∶1 | 600 | 600 | 42.2① | — | [ |
| 纤维素 | Py-GC/MS | 酸处理ZSM-5 | 1∶1 | 500 | 500 | 40.9① | 24.67 | [ |
| 花生壳 | Py-GC/MS | Zn改性ZSM-5 | 1∶1 | 550 | 550 | 22① | — | [ |
| 微藻 | Py-GC/MS | Cu改性HZSM-5(硅铝比80) | 5∶1 | 550 | 550 | 21.16① | 11.81 | [ |
| 纤维素二糖 | Py-GC/MS | Fe(1.4%)修饰HZSM-5 | 10∶1 | 500 | 500 | 18.20② | 12.12 | [ |
| 杨木木屑 | Py-GC/MS | Fe-Ni/ZSM-5 | 1∶1 | 550 | 550 | 16.82① 62.84mg/g③ | 16 | [ |
| 云南松 | 固定床 | Zn负载HZSM-5 | 2∶1 | 450 | 500 | 14.94① | 7.5 | [ |
| 松木木屑 | Py-GC/MS | Ti(SO4)2-Mo2N/HZSM-5 | 4∶3 | 650 | 650 | 10.92① | 42 | [ |
| 木质素 | 固定床 | 负载3% Fe ZSM-5 | 2∶1 | 600 | 600 | 8.94② | 6.3 | [ |
| 半纤维/素 | 非原位固定床 | 负载3% Fe ZSM-5 | 2∶1 | 600 | 600 | 6.77① | 33 | [ |
| 玉米秸秆 | Py-GC/MS | Zn/ZSM-5(硅铝比40) | 1∶1 | 500 | 500 | 183mg/g③ | 15.4 | [ |
| 樟木 | Py-GC/MS | 微介孔ZSM-5 | 4∶1 | 600 | 600 | 91.84mg/g③ | 12.82 | [ |
| 玉米秸秆 | Py-GC/MS | Fe浸渍HZSM-5 | 1∶1 | 800 | 800 | 25.43mg/g③ | — | [ |
玉米秸秆/HDPE 1∶1 | TG-MS-FTIR | Cu改性HZSM-5 | 1∶1 | 550 | 550 | 59.82① | — | [ |
| 木质素/LDPE1∶3 | 管式炉 | Cu2O/HZSM-5(5%) | 1∶2 | 700 | 700 | 50.39① | 13 | [ |
| 木耳菌渣/废聚烯烃 1∶1 | 固定床 | Al2O3/ZSM-51∶1 | 1∶1 | 600 | 600 | 63.11④ | — | [ |
| 木屑 | 热探针热解装置 | ZSM-5/CaO4∶1 | 5∶1 | 600 | 600 | 40① | 8.78 | [ |
| 污水浮渣/玉米秸秆 2∶1 | 微波热解固定床 | CaO/HZSM-51∶4 | 1∶1 | 550 | 550 | 35.77① | — | [ |
| 水稻秸秆/PVC | Py-GC/MS | CaO/HZSM-5 | 1∶1 | 500 | 500 | 34.34④ | — | [ |
竹渣/废轮胎 1∶4 | 固定床 | HZSM-5/CaO1∶1 | 2∶1 | 600 | 600 | 33.324① | 10.35 | [ |
竹材/LDPE 1∶1 | 固定床 | MgO/HZSM-52∶1 | 2∶1 | 450 | 550 | 20.39① | 12.62 | [ |
| 纤维素 | 双催化固定床 | CaO 15% ZSM-5 85% | 2∶1 | 600 | 600 | 13.42② | 15 | [ |
| 油饼 | Py-GC/MS | Org-CaO/NZSM-51∶1 | 6∶1 | 500 | 550 | 75① | — | [ |
| 水葫芦/废轮胎 | 固定床 | 多层MFI纳米片沸石 | 4∶1 | 1000 | 1000 | 69.18④ | — | [ |
| 山茶籽壳 | 管式炉 | N-ZSM-5 | 3∶1 | 500 | 500 | 50.6① | — | [ |
| [1] | 洪汉青, 杜玉如, 娄阳, 等. 芳烃生产技术进展及发展趋势[J]. 化学工业, 2018, 36(5): 40-44. |
| HONG Hanqing, DU Yuru, LOU Yang, et al. Advances and trends in aromatics technology[J]. Chemical Industry, 2018, 36(5): 40-44. | |
| [2] | BUSCA Guido. Production of gasolines and monocyclic aromatic hydrocarbons: From fossil raw materials to green processes[J]. Energies, 2021, 14(13): 4061. |
| [3] | 邱方程, 郭新良, 郑欣, 等. 液态有机储氢材料的常见体系及进展[J]. 广东化工, 2021, 48(12): 101-102, 120. |
| QIU Fangcheng, GUO Xinliang, ZHENG Xin, et al. Common system and progress of liquid organic hydrogen storage materials[J]. Guangdong Chemical Industry, 2021, 48(12): 101-102, 120. | |
| [4] | 马致远, 王辉, 王文辰, 等 催化裂化汽油馏分切割作连续重整原料生产芳烃 [J]. 石化技术与应用, 2023, 41(6): 456-460. |
| MA Zhiyuan, WANG Hui, WANG Wenchen, et al. Catalytic cracking gasoline fraction cutting as continuous reforming feedstock for producing aromatics[J]. Petrochemical Technology & Application, 2023, 41(6): 456-460. | |
| [5] | ZHANG Ji, YANG Junling, ZHANG Huafu, et al. Research status and future development of biomass liquid fuels[J]. BioResources, 2021, 16(2): 4523-4543. |
| [6] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
| ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. | |
| [7] | ZHANG Huiyan, YANG Ke, TAO Yujie, et al. Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials—A review[J]. Biotechnology Advances, 2023, 69: 108262. |
| [8] | CHEN Xu, CHEN Yingquan, YANG Haiping, et al. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource Technology, 2019, 273: 153-158. |
| [9] | QIU Bingbing, TAO Xuedong, WANG Jiahao, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review[J]. Energy Conversion and Management, 2022, 261: 115647. |
| [10] | 王盛华. 废轮胎热解特性及硫迁移转化实验与机理研究[D]. 武汉: 华中科技大学, 2020. |
| WANG Shenghua. Study on the pyrolysis performance of waste tire and the migration of sulfur[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| [11] | CHEN Wei-Hsin, NAVEEN C, GHODKE Praveen Kumar, et al. Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: A review on advance technologies, synergistic effect, and future prospectus[J]. Fuel, 2023, 345: 128177. |
| [12] | ALVAREZ Jon, AMUTIO Maider, LOPEZ Gartzen, et al. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres[J]. Waste Management, 2019, 85: 385-395. |
| [13] | HU Erfeng, ZHANG Yue, LIU Zuohua, et al. Enhanced synergies for product distributions and interactions during co-pyrolysis between corn stover and tyres[J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106770. |
| [14] | FAROOQ Muhammad Zohaib, ZEESHAN Muhammad, IQBAL Saeed, et al. Influence of waste tire addition on wheat straw pyrolysis yield and oil quality[J]. Energy, 2018, 144: 200-206. |
| [15] | SANAHUJA-PAREJO O, VESES A, NAVARRO M V, et al. Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels[J]. Energy Conversion and Management, 2018, 171: 1202-1212. |
| [16] | ZHENG Yunwu, WANG Jida, LIU Can, et al. Catalytic copyrolysis of metal impregnated biomass and plastic with Ni-based HZSM-5 catalyst: Synergistic effects, kinetics and product distribution[J]. International Journal of Energy Research, 2020, 44(7): 5917-5935. |
| [17] | 王卫民. 车辆废塑料/废轮胎与生物质共热解特性及动力学研究[D]. 杭州: 浙江科技学院, 2022. |
| WANG Weimin. Study on the characteristics and kinetics of co-pyrolysis of waste vehicle plastics/tires and biomass[D]. Hangzhou: Zhejiang University of Science and Technology, 2022. | |
| [18] | LIU Haoran, SHEN Yang, CUI Cunhao, et al. Catalytic co-pyrolysis of low-density polyethylene and lignin over Cu-modified HZSM-5: Insight with online photoionization mass spectrometry[J]. Fuel Processing Technology, 2023, 251: 107945. |
| [19] | Álvaro MUELAS, ARANDA Diego, CALLÉN María Soledad, et al. Properties and combustion characteristics of bio-oils from catalytic co-pyrolysis of grape seeds, polystyrene, and waste tires[J]. Energy & Fuels, 2020, 34(11): 14190-14203. |
| [20] | KHAN Shoaib Raza, ZEESHAN Muhammad, MASOOD Ahsan. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor[J]. Waste Management, 2020, 106: 21-31. |
| [21] | 孔令帅, 张庆法, 任夏瑾, 等. 分级孔HZSM-5催化烘焙预处理杨木快速热解制取芳烃[J]. 可再生能源, 2021, 39(6): 729-735. |
| KONG Lingshuai, ZHANG Qingfa, REN Xiajin, et al. The catalytic fast pyrolysis of torrefied poplar wood to aromatic compounds over hierarchical HZSM-5[J]. Renewable Energy Resources, 2021, 39(6): 729-735. | |
| [22] | LIU Qian, WANG Jingzhen, ZHOU Jun, et al. Promotion of monocyclic aromatics by catalytic fast pyrolysis of biomass with modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104964. |
| [23] | ESCHENBACHER Andreas, SARAEIAN Alireza, JENSEN Peter Arendt, et al. Deoxygenation of wheat straw fast pyrolysis vapors over Na-Al2O3 catalyst for production of bio-oil with low acidity[J]. Chemical Engineering Journal, 2020, 394: 124878. |
| [24] | 易琳琳. CaO耦合ZSM-5协同催化含碳固废热解定向制备芳烃研究[D]. 武汉: 华中科技大学, 2020. |
| YI Linlin. Research on the selective production of aromatics by catalytic pyrolysis of carbonaceous solid wastes with CaO and ZSM-5[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| [25] | AGNIHOTRI Nidhi, MONDAL Monoj Kumar. Comparison of non-catalytic and in situ catalytic pyrolysis of Melia azedarach sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106006. |
| [26] | KARNJANAKOM Surachai, BAYU Asep, HAO Xiaogang, et al. Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 421: 235-244. |
| [27] | MELO Josué Alves, DE SÁ Mirele Santana, MORAL Ainara, et al. Renewable hydrocarbon production from waste cottonseed oil pyrolysis and catalytic upgrading of vapors with Mo-Co and Mo-Ni catalysts supported on γ-Al2O3 [J]. Nanomaterials, 2021, 11(7): 1659. |
| [28] | LU Qiuxiang, LI Wei, ZHANG Xu, et al. Experimental study on catalytic pyrolysis of biomass over a Ni/Ca-promoted Fe catalyst[J]. Fuel, 2020, 263: 116690. |
| [29] | LU Qiang, ZHANG Ying, TANG Zhe, et al. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel, 2010, 89(8): 2096-2103. |
| [30] | 姚乃瑜, 曹景沛, 赵静平, 等. CTAB辅助晶种法合成Zn/ZSM-5催化剂及其在催化重整纤维素挥发分的作用[J]. 煤炭学报, 2023, 48(6): 2359-2368. |
| YAO Naiyu, CAO Jingpei, ZHAO Jingping, et al. Study on the synthesis of Zn/ZSM-5 by CTAB-assisted seeding method and its role in catalytic reforming cellulose volatiles[J]. Journal of China Coal Society, 2023, 48(6): 2359-2368. | |
| [31] | NISHU, LIU Ronghou, RAHMAN Md Maksudur, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
| [32] | DU Zhenyi, MA Xiaochen, LI Yun, et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: Catalyst screening in a pyroprobe[J]. Bioresource Technology, 2013, 139: 397-401. |
| [33] | 万震, 王绍庆, 李志合, 等. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
| WAN Zhen, WANG Shaoqing, LI Zhihe, et al. Research progress in pyrolysis of lignin to aromatics catalyzed by HZSM-5 molecular sieve[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. | |
| [34] | LI Yingkai, NISHU, YELLEZUOME Dominic, et al. Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis[J]. Fuel, 2022, 312: 122924. |
| [35] | 梁艳玲, 代婉婷, 周峰, 等. 多级孔ZSM-5分子筛的制备及其催化纤维素快速热解性能研究[J]. 黑龙江大学自然科学学报, 2019, 36(5): 574-581. |
| LIANG Yanling, DAI Wanting, ZHOU Feng, et al. Preparation of hierarchical ZSM-5 zeolites and their catalytic performance for fast pyrolysis of cellulose[J]. Journal of Natural Science of Heilongjiang University, 2019, 36(5): 574-581. | |
| [36] | 李延吉, 伊嘉婧, 何强, 等. 碱改性HZSM-5热解生物质模型化合物影响研究[J]. 太阳能学报, 2022, 43(5): 383-390. |
| LI Yanji, YI Jiajing, HE Qiang, et al. Effect of alkali-modified HZSM-5 modified on catalytic pyrolysis of biomass model compounds[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 383-390. | |
| [37] | WANG Jia, ZHONG Zhaoping, DING Kuan, et al. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5[J]. Energy, 2017, 133: 90-98. |
| [38] | 郭天阳. 多级孔分子筛催化转化纤维素热解蒸汽定向制备轻质芳烃研究[D]. 淄博: 山东理工大学, 2023. |
| GUO Tianyang. Study on preparation of light aromatic hydrocarbons from cellulose pyrolysis vapor catalyzed by porous molecular sieves[D]. Zibo: Shandong University of Technology, 2023. | |
| [39] | 车庆丰. 改性ZSM-5催化热解生物质制备单环芳烃研究[D]. 武汉: 华中科技大学, 2020. |
| CHE Qingfeng. Study on biomass catalytic pyrolysis with modified ZSM-5 for the production of monocyclic aromatic hydrocarbons[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| [40] | CHEN Liyao, MA Xiaoqian, TANG Fangfang, et al. Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5[J]. Bioresource Technology, 2020, 312: 123592. |
| [41] | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
| [42] | 邓同辉. 基于改性HZSM-5和纳米片层分子筛的生物质催化热解特性研究[D]. 广州: 华南理工大学, 2020. |
| DENG Tonghui. Study on the catalytic pyrolysis characteristic of biomass based on modified HZSM-5 and nanosheet lamellar zeolite[D]. Guangzhou: South China University of Technology, 2020. | |
| [43] | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
| SUN Laizhi, CHEN Lei, ZHAO Baofeng, et al. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
| [44] | 王嘉骏. Fe, Co, Cu改性HZSM-5催化热解制备生物油的试验研究[D]. 镇江: 江苏大学, 2017. |
| WANG Jiajun. Fe, Co, Cu-modified HZSM-5 catalysts for online upgrading of the pyrolysis vapors from rape straw[D]. Zhenjiang: Jiangsu University, 2017. | |
| [45] | MULLEN Charles A, BOATENG Akwasi A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1623-1631. |
| [46] | YANG Mingfa, SHAO Jingai, YANG Zixu, et al. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: Significance of Fe contents and temperature[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 259-265. |
| [47] | 郑云武, 裴涛, 李冬华, 等. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
| ZHENG Yunwu, PEI Tao, LI Donghua, et al. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. | |
| [48] | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
| FANG Shuqi, SHI Chong, LI Pan, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
| [49] | 郑云武, 沈华杰, 王继大, 等. Zn-Na2CO3复合改性HZSM-5在线催化生物质热解制备芳烃[J]. 西南林业大学学报(自然科学), 2019, 39(4): 125-134. |
| ZHENG Yunwu, SHEN Huajie, WANG Jida, et al. Production of aromatic hydrocarbon by catalytic pyrolysis vapor upgrading of biomass with Zn-Na2CO3/HZSM-5 mesoporous catalyst[J]. Journal of Southwest Forestry University (Natural Sciences), 2019, 39(4): 125-134. | |
| [50] | YUNG Matthew M, STANTON Alexander R, IISA Kristiina, et al. Multiscale evaluation of catalytic upgrading of biomass pyrolysis vapors on Ni- and Ga-modified ZSM-5[J]. Energy & Fuels, 2016, 30(11): 9471-9479. |
| [51] | DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst[J]. Bioresource Technology, 2019, 272: 407-414. |
| [52] | 张鑫磊, 赵贞妮, 王沛洁, 等. ZSM-5分子筛对生物质热解特性影响[J]. 当代化工研究, 2023(2): 34-36. |
| ZHANG Xinlei, ZHAO Zhenni, WANG Peijie, et al. Effect of ZSM-5 molecular sieve on biomass pyrolysis characteristics[J]. Modern Chemical Research, 2023(2): 34-36. | |
| [53] | FANG Shuqi, SHI Chong, LI Pan, et al. Effects of metal-modified ZSM-5 catalysts on product characteristics based on the Py-GC/MS of peanut shells[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17307-17314. |
| [54] | 柴美云, 刘荣厚. Ga、Zn改性ZSM-5对生物质热裂解产物单环芳烃选择性的影响[J].能源环境保护, 2024, 38(2): 123-135. |
| CHAI Meiyun, LIU Ronghou. Effect of Ga, Zn modified ZSM-5 catalysts on the biomass catalytic pyrolysis for MAHs production[J]. Energy Environmental Protection, 2024, 38(2): 123-135. | |
| [55] | YANG Mingfa, SHAO Jingai, YANG Haiping, et al. Catalytic pyrolysis of hemicellulose for the production of light olefins and aromatics over Fe modified ZSM-5 catalysts[J]. Cellulose, 2019, 26(15): 8489-8500. |
| [56] | SOCORRO FONTES Maria DO, MELO Dulce M A, FONTES Lúcio A O, et al. Ex situ catalytic biomass pyrolysis using mesoporous Ti-MCM-41[J]. Environmental Science and Pollution Research International, 2019, 26(6): 5983-5989. |
| [57] | YANG Mingfa, SHAO Jingai, YANG Haiping, et al. Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor[J]. Bioresource Technology, 2019, 273: 77-85. |
| [58] | AHMED Absar, KHAN Shoaib Raza, ZEESHAN Muhammad. Application of low-cost natural zeolite catalyst to enhance monoaromatics yield in co-pyrolysis of wheat straw and waste tire[J]. Journal of the Energy Institute, 2022, 105: 367-375. |
| [59] | CHE Qingfeng, YANG Minjiao, WANG Xianhua, et al. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust[J]. Fuel Processing Technology, 2019, 188: 146-152. |
| [60] | 郑云武, 王继大, 刘灿, 等. 改性HZSM-5催化生物质与塑料热解制备芳烃和生物炭[J]. 农业工程学报, 2020, 36(17): 190-201. |
| ZHENG Yunwu, WANG Jida, LIU Can, et al. Preparation of aromatic and bio-char by pyrolysis of biomass and plastics catalyzed by modified HZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 190-201. | |
| [61] | 李佳慧. 金属氧化物/HZSM-5催化木耳菌渣与废聚烯烃共热解研究[D]. 西安: 西安理工大学, 2024 |
| LI Jiahui. Metal oxide/HZSM-5 catalysed co-pyrolysis of fungal sludge with waste polyolefin[D]. Xi’an: Xi’an University of Technology, 2024. | |
| [62] | LIU Shiyu, XIE Qinglong, ZHANG Bo, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresource Technology, 2016, 204: 164-170. |
| [63] | 周欢. 多级孔ZSM-5分子筛催化生物质热解制备芳烃研究[D]. 杭州: 浙江大学, 2022. |
| ZHOU Huan. Study on catalytic pyrolysis of biomass to aromatic over hierarchical ZSM-5 zeolite[D]. Hangzhou: Zhejiang University, 2022. | |
| [64] | ZHENG Yunwu, WANG Fei, YANG Xiaoqin, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179. |
| [65] | LU Qiang, WANG Zexiang, GUO Haoqiang, et al. Selective preparation of monocyclic aromatic hydrocarbons from ex-situ catalytic fast pyrolysis of pine over Ti(SO4)2-Mo2N/HZSM-5 catalyst[J]. Fuel, 2019, 243: 88-96. |
| [66] | 赵明. 改性HZSM-5催化生物质与HDPE共热解制取轻质芳烃研究[D]. 沈阳: 沈阳航空航天大学, 2022. |
| ZHAO Ming. Synthesis of light aromatic hydrocarbons by co-pyrolysis of biomass and HDPE catalyzed by modified HZSM-5[D]. Shenyang: Shenyang Aerospace University, 2022. | |
| [67] | 王彩云, 王焦飞, 张玉洁, 等. CaO/HZSM-5复合催化剂调控水稻秸秆和PVC共热解产物的协同作用研究[J]. 燃料化学学报(中英文), 2025, 53(1) 82-95. |
| WANG Caiyun, WANG Jiaofei, ZHANG Yujie, et al. Study on the synergistic effect of CaO/HZSM-5 composite catalyst in regulating the co-pyrolysis products of rice straw and PVC[J]. Journal of Fuel Chemistry and Technology, 2025, 53(1) 82-95. | |
| [68] | ZHANG Huiyan, CHENG Yuting, VISPUTE Tushar P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297-2307. |
| [69] | MOOGI Surendar, Sumin PYO, FAROOQ Abid, et al. Enhancement of bioaromatics production from food waste through catalytic pyrolysis over Zn and Mo-loaded HZSM-5 under an environment of decomposed methane[J]. Chemical Engineering Journal, 2022, 446: 137215. |
| [70] | YANG Zixu, KUMAR Ajay, APBLETT Allen. Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 484-492. |
| [71] | SRINIVASAN Vaishnavi, ADHIKARI Sushil, CHATTANATHAN Shyamsundar Ayalur, et al. Catalytic pyrolysis of torrefied biomass for hydrocarbons production[J]. Energy & Fuels, 2012, 26(12): 7347-7353. |
| [72] | LI Kai, WANG Zexiang, ZHANG Guan, et al. Selective production of monocyclic aromatic hydrocarbons from ex situ catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen source[J]. Sustainable Energy & Fuels, 2020, 4(2): 538-548. |
| [1] | HONG Kang, ZHANG Chong, MA Hongli, SUN Yongrong, JIANG Liqun, BAO Guirong. Research progress of biomass hard charcoal as an anode material for sodium-ion batteries [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 340-349. |
| [2] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [3] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [4] | LI Ruiying, ZHOU Ying, ZHOU Hongjun, XU Chunming. Biomass-derived nano-carbon-based materials: Opportunities and challenges in electrochemical applications [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 288-306. |
| [5] | JIANG Chunxi, LIN Dingbiao, BIAN Yao, ZHOU Wei, LU Haifeng, GUO Xiaolei, LIU Haifeng. Characteristics of rice husk as entrained-flow bed gasification feedstock and their impact on the process [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4937-4944. |
| [6] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [7] | HU Jiazhi, JIANG Xinyu, LI Fan, LI Zhihui. Surface catalytic reaction model of the near-space vehicle reentry DSMC method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4478-4487. |
| [8] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [9] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [10] | ZHANG Jian, LIN Rihui, YIN Jianglin, LI Yanzi, FU Yulu, LIU Xiaoxia. Dry pretreatment of sugarcane trash and preparation and characterization of its acetylated products [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3997-4005. |
| [11] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| [12] | ZHOU Ying, BAI Baohua, PU Tian, ZHOU Enze, HU Jianqing, ZHANG Songlin, ZHOU Hongjun, XU Chunming. Construction and demonstration of net-zero industrial parks [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4282-4286. |
| [13] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [14] | KONG Xiaoyang, LIU Zhentao, ZOU Yutong, WANG Dandan, DUAN Aijun, XU Chunming, WANG Xilong. Development in catalysts for hydrocracking of polycyclic aromatic hydrocarbons to BTX [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3468-3485. |
| [15] | WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |