Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 340-349.DOI: 10.16085/j.issn.1000-6613.2025-0597
• Materials science and technology • Previous Articles
HONG Kang1,2(
), ZHANG Chong1,2, MA Hongli2, SUN Yongrong2, JIANG Liqun2(
), BAO Guirong1(
)
Received:2025-04-21
Revised:2025-06-23
Online:2025-11-24
Published:2025-10-25
Contact:
JIANG Liqun, BAO Guirong
洪康1,2(
), 张冲1,2, 马宏莉2, 孙雍荣2, 蒋丽群2(
), 包桂蓉1(
)
通讯作者:
蒋丽群,包桂蓉
作者简介:洪康(2001—),男,硕士研究生,研究方向为生物质硬炭。E-mail: 1293810776.qq.com。
基金资助:CLC Number:
HONG Kang, ZHANG Chong, MA Hongli, SUN Yongrong, JIANG Liqun, BAO Guirong. Research progress of biomass hard charcoal as an anode material for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 340-349.
洪康, 张冲, 马宏莉, 孙雍荣, 蒋丽群, 包桂蓉. 生物质硬炭基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 340-349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0597
| 公司 | 前体 | 性能 | 产能情况 |
|---|---|---|---|
| 日本可乐丽 | 椰子壳 | 320~405mAh/g 首次库仑效率88%~90% | 已量产,产品售价高于2×105CNY/t |
| 佰思格 | 葡萄糖、淀粉、果壳等 | 400mAh/g以上 首次库仑效率≥92% | 2025年总产能预期提升至30000t,较2024年增长200%;目前公司已建成8条自动化产线 |
| 中科海纳 | 无烟煤、酚醛树脂 | 245mAh/g 首次库仑效率>88% | 2000t/a软炭负极材料产线已实现量产 |
| 贝特瑞 | 稻壳、果壳、树脂等 | 350mAh/g 首次库仑效率>88% | 400t/a中试线用于技术验证和新品开发;3000t/a量产线实现稳定供货 |
| 杉杉科技 | 榛子壳、树脂、沥青等 | 480mAh/g 首次库仑效率85% | 2023年硬炭产能达300t,2024年产能达1000t |
| 圣泉集团 | 椰子壳、树脂 | 330mAh/g以上 首次库仑效率≥88% | 已建成万吨级硬炭负极产线,并实现量产;计划投资2.48×109CNY建设年产1×105t生物基硬炭负极材料项目 |
| 翔丰华 | 树脂、果壳、焦类、石墨等 | 400mAh/g 首次库仑效率>80% | 产能8×104t/a,正在推进“6×104t人造石墨负极材料一体化生产基地”项目 |
| 元力股份 | 稻壳、椰子壳、毛竹等 | 330mAh/g 首次库仑效率87% | 主业务是活性炭,目前与金龙鱼共同布局马来西亚3×104t椰子壳转化为生物质硬炭的业务 |
| 多氟多 | 核桃壳 | — | 已完成2000t/a负极产线的投产,2025年规划产能提升至5GWh/a |
| 公司 | 前体 | 性能 | 产能情况 |
|---|---|---|---|
| 日本可乐丽 | 椰子壳 | 320~405mAh/g 首次库仑效率88%~90% | 已量产,产品售价高于2×105CNY/t |
| 佰思格 | 葡萄糖、淀粉、果壳等 | 400mAh/g以上 首次库仑效率≥92% | 2025年总产能预期提升至30000t,较2024年增长200%;目前公司已建成8条自动化产线 |
| 中科海纳 | 无烟煤、酚醛树脂 | 245mAh/g 首次库仑效率>88% | 2000t/a软炭负极材料产线已实现量产 |
| 贝特瑞 | 稻壳、果壳、树脂等 | 350mAh/g 首次库仑效率>88% | 400t/a中试线用于技术验证和新品开发;3000t/a量产线实现稳定供货 |
| 杉杉科技 | 榛子壳、树脂、沥青等 | 480mAh/g 首次库仑效率85% | 2023年硬炭产能达300t,2024年产能达1000t |
| 圣泉集团 | 椰子壳、树脂 | 330mAh/g以上 首次库仑效率≥88% | 已建成万吨级硬炭负极产线,并实现量产;计划投资2.48×109CNY建设年产1×105t生物基硬炭负极材料项目 |
| 翔丰华 | 树脂、果壳、焦类、石墨等 | 400mAh/g 首次库仑效率>80% | 产能8×104t/a,正在推进“6×104t人造石墨负极材料一体化生产基地”项目 |
| 元力股份 | 稻壳、椰子壳、毛竹等 | 330mAh/g 首次库仑效率87% | 主业务是活性炭,目前与金龙鱼共同布局马来西亚3×104t椰子壳转化为生物质硬炭的业务 |
| 多氟多 | 核桃壳 | — | 已完成2000t/a负极产线的投产,2025年规划产能提升至5GWh/a |
| 原料 | 预处理 | 炭化工艺 | 电化学性能 | 参考文献 |
|---|---|---|---|---|
| 榛子壳 | 酸洗 | 在氩气氛围下,加热至1400℃并保温3h | 342mAh/g的可逆容量 91%的ICE | [ |
| 竹子 | 碱洗 | 在氩气氛围下,加热至1300℃并保温2h | 303.8mAh/g的可逆容量 83.7%的ICE | [ |
| Ti₃C₂Tₓ MXene | 碱洗 | — | 313mAh/g的比容量 147mAh/g的可逆容量 | [ |
| 甘蔗渣 | 碱洗 | 在氩气氛围下,加热至950℃并保温6h | 212mAh/g的可逆放电容量 17%的初始衰减率 | [ |
| 废弃橡树叶 | 水热预处理 | 在氮气氛围下,加热至1300℃并保温2h | 378mAh/g的可逆容量 85%的ICE | [ |
| 纤维素 | 机械处理 | 在氩气氛围下,加热至350℃并保温3h,再以1℃/min加热至1300℃ | 斜坡区容量从178.3mAh/g增至342.3mAh/g | [ |
| 萘-2,6-二羧酸钠(Na-NDC) | 高能辐射处理 | — | 250mAh/g的可逆容量 78%的ICE | [ |
| 原料 | 预处理 | 炭化工艺 | 电化学性能 | 参考文献 |
|---|---|---|---|---|
| 榛子壳 | 酸洗 | 在氩气氛围下,加热至1400℃并保温3h | 342mAh/g的可逆容量 91%的ICE | [ |
| 竹子 | 碱洗 | 在氩气氛围下,加热至1300℃并保温2h | 303.8mAh/g的可逆容量 83.7%的ICE | [ |
| Ti₃C₂Tₓ MXene | 碱洗 | — | 313mAh/g的比容量 147mAh/g的可逆容量 | [ |
| 甘蔗渣 | 碱洗 | 在氩气氛围下,加热至950℃并保温6h | 212mAh/g的可逆放电容量 17%的初始衰减率 | [ |
| 废弃橡树叶 | 水热预处理 | 在氮气氛围下,加热至1300℃并保温2h | 378mAh/g的可逆容量 85%的ICE | [ |
| 纤维素 | 机械处理 | 在氩气氛围下,加热至350℃并保温3h,再以1℃/min加热至1300℃ | 斜坡区容量从178.3mAh/g增至342.3mAh/g | [ |
| 萘-2,6-二羧酸钠(Na-NDC) | 高能辐射处理 | — | 250mAh/g的可逆容量 78%的ICE | [ |
| [1] | ARMAND M, J-M TARASCON. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
| [2] | ZENG Ziqi, MURUGESAN Vijayakumar, HAN Kee Sung, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
| [3] | PEI Linyuan, CAO Hailiang, YANG Liangtao, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics, 2020, 26(11): 5535-5542. |
| [4] | 邓文涛. 生物质基硬炭负极材料的制备及储钠性能研究[D]. 长沙: 中南林业科技大学, 2022. |
| DENG Wentao. Preparation and sodium storage performance of biomass-based hard carbon anode materials[D]. Changsha: Central South University of Forestry & Technology, 2022. | |
| [5] | FENG Dong, LIU Qi, SUN Fasen, et al. Study on the electrochemical features of carbon-coated GeS2 and GeSe2 anodes toward application in sodium-ion battery[J]. Energy & Fuels, 2021, 35(16): 13499-13505. |
| [6] | FENG Dong, TANG Shan, XU Hui, et al. High performance sodium-ion anodes based on FeSb2S4/Sb embedded within porous reduced graphene oxide/carbon nanotubes matrix[J]. Journal of Alloys and Compounds, 2023, 931: 167576. |
| [7] | XIAO Lifen, LU Haiyan, FANG Yongjin, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials, 2018, 8(20): 1703238. |
| [8] | WANG Yuesheng, FENG Zimin, ZHU Wen, et al. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries[J]. Materials, 2018, 11(8): 1294. |
| [9] | CHEN Zicheng, ZHANG Huiwen, HE Zhibin, et al. Bamboo as an emerging resource for worldwide pulping and papermaking[J]. BioResources, 2019, 14(1): 3-5. |
| [10] | ZHU Youyu, CHEN Mingming, LI Qi, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701. |
| [11] | ZHANG Minghao, LI Yu, WU Feng, et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. |
| [12] | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
| [13] | FAN Xiangyu, KONG Xirui, ZHANG Pengtang, et al. Research progress on hard carbon materials in advanced sodium-ion batteries[J]. Energy Storage Materials, 2024, 69: 103386. |
| [14] | STEVENS D A, DAHN J R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of the Electrochemical Society, 2000, 147(12): 4428. |
| [15] | STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
| [16] | XU Zhen, WANG Jing, GUO Zhenyu, et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes[J]. Advanced Energy Materials, 2022, 12(18): 2200208. |
| [17] | HUANG Yujie, ZHONG Xue, HU Xinyu, et al. Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region[J]. Advanced Functional Materials, 2024, 34(4): 2308392. |
| [18] | KOMABA Shinichi, MURATA Wataru, ISHIKAWA Toru, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
| [19] | ANISKEVICH Yauhen, YU Jun Ho, KIM Ji-Young, et al. Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304300. |
| [20] | CAO Yuliang, XIAO Lifen, SUSHKO Maria L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
| [21] | LI Zhifei, BOMMIER Clement, CHONG Zhi sen, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
| [22] | QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
| [23] | SUN Ning, GUAN Zhaoruxin, LIU Yuwen, et al. Extended “adsorption-insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
| [24] | CHEN Xiaoyang, FANG Youlong, TIAN Jiyu, et al. Electrochemical insight into the sodium-ion storage mechanism on a hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18914-18922. |
| [25] | LI Yunming, HU Yongsheng, TITIRICI Maria-Magdalena, et al. Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659. |
| [26] | ZHANG Biao, GHIMBEU Camélia Matei, LABERTY Christel, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6: 1501588. |
| [27] | BAI Panxing, HE Yongwu, ZOU Xiaoxi, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
| [28] | BOMMIER Clement, SURTA Todd Wesley, DOLGOS Michelle, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
| [29] | WANG Jing, YAN Lei, REN Qingjuan, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196. |
| [30] | LIU Pin, LI Yunming, HU Yongsheng, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34): 13046-13052. |
| [31] | TANG Yi, HE Junwei, PENG Jiao, et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery anode[J]. Energy & Fuels, 2024, 38(8): 7389-7398. |
| [32] | WANG Huanlei, YU Wenhua, SHI Jing, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110. |
| [33] | XIANG Jiaxing, MA Luxiang, SUN Yanxia, et al. Ball-milling-assisted N/O codoping for enhanced sodium storage performance of coconut-shell-derived hard carbon anodes in sodium-ion batteries[J]. Langmuir, 2024, 40(45): 23853-23863. |
| [34] | WANG Jiaxu, LI Fangyu, DUAN Yuansen, et al. Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries[J]. Ionics, 2023, 29(6): 2311-2318. |
| [35] | GAO Tengteng, ZHOU Youhang, JIANG Yizhi, et al. Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries[J]. Diamond and Related Materials, 2024, 150: 111737. |
| [36] | LU Mengwei, HUANG Ying, CHEN Chen. Cedarwood bark-derived hard carbon as an anode for high-performance sodium-ion batteries[J]. Energy & Fuels, 2020, 34(9): 11489-11497. |
| [37] | WANG Xiaohong, ZHENG Cheng, QI Li, et al. Carbon derived from pine needles as a Na+-storage electrode material in dual-ion batteries[J]. Global Challenges, 2017, 1(7): 1700055. |
| [38] | DÁVILA‐GUZMÁN Nancy Elizabeth, DE JESÚS CERINO-CÓRDOVA Felipe, Eduardo SOTO‐REGALADO, et al. Copper biosorption by spent coffee ground: Equilibrium, kinetics, and mechanism[J]. CLEAN—Soil, Air, Water, 2013, 41(6): 557-564. |
| [39] | PUJOL D, LIU C, GOMINHO J, et al. The chemical composition of exhausted coffee waste[J]. Industrial Crops and Products, 2013, 50: 423-429. |
| [40] | KALIBEK Madina, RAKHYMBAY Lunara, ZHAKIYEVA Zhanar, et al. From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries[J]. Carbon Resources Conversion, 2024, 7(3): 100225. |
| [41] | WANG Jiacheng, ZHAO Jiahua, HE Xiangxi, et al. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries[J]. Sustainable Materials and Technologies, 2022, 33: e00446. |
| [42] | KUAI J, XIE J, WANG J D, et al. Comparison and optimization of biomass-derived hard carbon as anode materials for sodium-ion batteries[J]. Chemical Physics Letters, 2024, 842: 141214. |
| [43] | YAO Yiwei, MA Yuan, CHEN Chi, et al. Enhanced sodium-storage performances of crumpled MXene nanosheets via alkali treatment-induced active ammonium ions[J]. Journal of Colloid and Interface Science, 2024, 670: 647-657. |
| [44] | MOHIT, HASHMI S A. Hard carbon anode derived from pre-treated bio-waste sugarcane bagasse for high capacity sodium-ion battery fabricated with bio-deFgradable porous polymer electrolyte[J]. Journal of Energy Storage, 2024, 83: 110694. |
| [45] | ISHAQ Muhammad, JABEEN Maher, HE Yushi, et al. Unveiling the critical role of pre-hydrothermal effect in plant biowaste-derived hard carbon for superior rate capability and cycle life in sodium-ion batteries[J]. Advanced Energy Materials, 2025, 15(16): 2403142. |
| [46] | LU Haiyan, AI Fangxing, JIA Yanlong, et al. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball‐milling method[J]. Small, 2018, 14(39): e1802694. |
| [47] | DESAI Aamod V, RAINER Daniel N, PRAMANIK Atin, et al. Rapid microwave-assisted synthesis and electrode optimization of organic anode materials in sodium-ion batteries[J]. Small Methods, 2021, 5(12): 2101016. |
| [48] | CHEN Dongyu, GAO Dongxiao, HUANG Shunchao, et al. Influence of acid-washed pretreatment on the pyrolysis of corn straw: A study on characteristics, kinetics and bio-oil composition[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105027. |
| [49] | AMNUAYCHEEWA Plaimein, HENGAROONPRASAN Rotchanaphan, RATTANAPORN Kittipong, et al. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids[J]. Industrial Crops and Products, 2016, 87: 247-254. |
| [50] | TORGET R, WALTER P, HIMMEL M, et al. Dilute-acid pretreatment of corn residues and short-rotation woody crops[J]. Applied Biochemistry and Biotechnology, 1991, 28(1): 75-86. |
| [51] | PAN Guoyu, ZHAO Renfei, HUANG Zhikun, et al. Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage[J]. Carbon, 2024, 224: 118955. |
| [52] | XIA Liangjun, ZHANG Chunhua, WANG Aming, et al. Morphologies and properties of Juncus effusus fiber after alkali treatment[J]. Cellulose, 2020, 27(4): 1909-1920. |
| [53] | ŠOŠTARIĆ Tatjana D, PETROVIĆ Marija S, PASTOR Ferenc T, et al. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment[J]. Journal of Molecular Liquids, 2018, 259: 340-349. |
| [54] | Fuchun NAN, NAGARAJAN Selvaraj, CHEN Yuwei, et al. Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8951-8958. |
| [55] | HUANG Zongyi, HUANG Jiahong, ZHONG Lei, et al. Deconstruction engineering of lignocellulose toward high-plateau-capacity hard carbon anodes for sodium-ion batteries[J]. Small, 2024, 20(50): e2405632. |
| [56] | OLIVA A, TAN L C, PAPIRIO S, et al. Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials[J]. Renewable Energy, 2021, 169: 1000-1012. |
| [57] | TANG Chenglun, SHAN Junqiang, CHEN Yanjun, et al. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin[J]. Bioresource Technology, 2017, 232: 222-228. |
| [58] | ZHANG Xiue, CAO Yongjie, LI Guodong, et al. Exploring carbonization temperature to create closed pores for hard carbon as high-performance sodium-ion battery anodes[J]. Small, 2024, 20(31): e2311197. |
| [59] | WANG Pengzi, ZHU Xiaoshu, WANG Qiaoqiao, et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5761-5769. |
| [60] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
| GUO Hang, HAN Wenli, DONG Xiaoling, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. | |
| [61] | WANG Qiaoqiao, ZHU Xiaoshu, LIU Yuhan, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
| [62] | CHENG Zhiheng, ZHANG Hao, CUI Junfeng, et al. Interlayer-expanded carbon anodes with exceptional rates and long-term cycling via kinetically decoupled carbonization[J]. Joule, 2025, 9(3): 101812. |
| [63] | LI Yulong, YANG Yin, LIN Rundan, et al. Enhancing electrochemical performance in sodium-ion batteries: Strategic modification of oxygen-containing functional groups in hard carbon[J]. Fuel, 2025, 381:133397. |
| [64] | ALVIN Stevanus, YOON Dohyeon, CHANDRA Christian, et al. Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries[J]. Journal of Power Sources, 2019, 430: 157-168. |
| [1] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [2] | LI Ruiying, ZHOU Ying, ZHOU Hongjun, XU Chunming. Biomass-derived nano-carbon-based materials: Opportunities and challenges in electrochemical applications [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 288-306. |
| [3] | JIANG Chunxi, LIN Dingbiao, BIAN Yao, ZHOU Wei, LU Haifeng, GUO Xiaolei, LIU Haifeng. Characteristics of rice husk as entrained-flow bed gasification feedstock and their impact on the process [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4937-4944. |
| [4] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [5] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [6] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| [7] | ZHOU Ying, BAI Baohua, PU Tian, ZHOU Enze, HU Jianqing, ZHANG Songlin, ZHOU Hongjun, XU Chunming. Construction and demonstration of net-zero industrial parks [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4282-4286. |
| [8] | ZHANG Jian, LIN Rihui, YIN Jianglin, LI Yanzi, FU Yulu, LIU Xiaoxia. Dry pretreatment of sugarcane trash and preparation and characterization of its acetylated products [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3997-4005. |
| [9] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [10] | WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523. |
| [11] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| [12] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [13] | CAO Xianghong, ZHOU Feng, JIANG Rui, LIU Shizhe, FANG Xiangchen, KANG Wanzhong, QIAO Jinliang, NIE Hong. Strategies to accelerate the development of China's bio-based materials industry [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2385-2393. |
| [14] | NIE Hong, XI Yuanbing, GE Panzhu, DING Shi, ZHANG Dengqian. Sustainable aviation fuel production technology and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2529-2534. |
| [15] | CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |