Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5899-5910.DOI: 10.16085/j.issn.1000-6613.2024-1291
• Resources and environmental engineering • Previous Articles
ZENG Junjian1,2(
), DU Yijun2, HE Jing1, XUE Lixin1,3(
)
Received:2024-08-07
Revised:2024-09-05
Online:2025-11-10
Published:2025-10-25
Contact:
XUE Lixin
通讯作者:
薛立新
作者简介:曾军建(1992—),男,博士研究生,研究方向为膜科学与技术。E-mail:745036425@qq.com。
基金资助:CLC Number:
ZENG Junjian, DU Yijun, HE Jing, XUE Lixin. Progress in the synthesis of graphitic carbon nitride and its application in dye degradation membranes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5899-5910.
曾军建, 杜轶君, 何静, 薛立新. 石墨相氮化碳的制备及在染料降解膜中的应用进展[J]. 化工进展, 2025, 44(10): 5899-5910.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1291
| 制备方法 | 方法介绍 | 优点 | 缺点 | 主要应用场景 |
|---|---|---|---|---|
| 水热合成[ | 在封闭系统中使用水作溶剂,加热和高压合成g-C3N4 | 条件温和,易控制 | 时间较长,对设备要求高 | 实验室小批量制备 |
| 化学气相沉积[ | 通过分解气态前体高温下在基板上沉积g-C3N4 | 可控性高,纯度高 | 成本高,设备复杂 | 高端应用如半导体行业 |
| 等离子体溅射反应沉积[ | 使用等离子体技术将g-C3N4的靶材料溅射到基板上 | 膜质均匀,结构紧凑 | 能耗高,设备成本高 | 用于制备薄膜和涂层 |
| 热聚合法 | 将含氮有机物(如尿素或三聚氰胺)在高温下直接转化 | 操作简便,成本低,效率高 | 高温反应造成结构密集化 | 大规模工业生产、光催化剂制备 |
| 制备方法 | 方法介绍 | 优点 | 缺点 | 主要应用场景 |
|---|---|---|---|---|
| 水热合成[ | 在封闭系统中使用水作溶剂,加热和高压合成g-C3N4 | 条件温和,易控制 | 时间较长,对设备要求高 | 实验室小批量制备 |
| 化学气相沉积[ | 通过分解气态前体高温下在基板上沉积g-C3N4 | 可控性高,纯度高 | 成本高,设备复杂 | 高端应用如半导体行业 |
| 等离子体溅射反应沉积[ | 使用等离子体技术将g-C3N4的靶材料溅射到基板上 | 膜质均匀,结构紧凑 | 能耗高,设备成本高 | 用于制备薄膜和涂层 |
| 热聚合法 | 将含氮有机物(如尿素或三聚氰胺)在高温下直接转化 | 操作简便,成本低,效率高 | 高温反应造成结构密集化 | 大规模工业生产、光催化剂制备 |
| 结构优化 | 方法介绍 | 优化方法 | 优点 | 缺点 |
|---|---|---|---|---|
| 剥离处理法 | 使用物理或化学手段将g-C3N4从多层结构剥离成单层纳米片 | 热氧化蚀刻 | 简单,成本低;可在室温下操作,适用于大规模生产;通过质子化和层间膨胀简化剥离过程 | 会引入缺陷,产品收率低;需要适当的溶剂和超声设备;对化学品和处理条件要求高 |
| 超声辅助液体剥离 | ||||
| 化学剥离 | ||||
| 模板辅助合成法 | 依赖于模板来控制g-C3N4的二维结构,从而构建特定形态的纳米片 | 硬模板法 | 精确控制纳米片的形状和尺寸;环保,避免使用有害化学品 | 需要使用有害化学品;无法精确控制结构 |
| 软模板法 |
| 结构优化 | 方法介绍 | 优化方法 | 优点 | 缺点 |
|---|---|---|---|---|
| 剥离处理法 | 使用物理或化学手段将g-C3N4从多层结构剥离成单层纳米片 | 热氧化蚀刻 | 简单,成本低;可在室温下操作,适用于大规模生产;通过质子化和层间膨胀简化剥离过程 | 会引入缺陷,产品收率低;需要适当的溶剂和超声设备;对化学品和处理条件要求高 |
| 超声辅助液体剥离 | ||||
| 化学剥离 | ||||
| 模板辅助合成法 | 依赖于模板来控制g-C3N4的二维结构,从而构建特定形态的纳米片 | 硬模板法 | 精确控制纳米片的形状和尺寸;环保,避免使用有害化学品 | 需要使用有害化学品;无法精确控制结构 |
| 软模板法 |
| 序号 | 光催化剂 | 支撑材料 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | g-C3N4 | Al2O3[ | 真空过滤法 | MB,5mg/L | 120min内99% |
| 2 | g-C3N4 | PAN[ | 真空过滤法 | MB,20mg/L | 120min内99% |
| 3 | g-C3N4 | PMMA[ | 真空过滤法 | RhB,10mg/L | 180min内83% |
| 4 | g-C3N4 | PVDF[ | 真空过滤法 | RhB,10mg/L | 250min内84.24% |
| 5 | Fe-POMs/g-C3N4 | PC[ | 真空过滤法 | MB,10mg/L | 80min内98.6% |
| 6 | GNPs/g-C3N4/GO | PC[ | 真空过滤法 | R6G,4.8mg/L | 120min内100% |
| 7 | g-C3N4 | 碳纤维布[ | 热凝聚法 | RhB,10mg/L | 30min内98% |
| 8 | g-C3N4 | Cu[ | 热凝聚法 | MB,3.2mg/L | 120min内85% |
| 9 | g-C3N4/TiO2 | 玻璃[ | 浸涂法 | RhB,5mg/L | 180min内31.2% |
| 10 | g-C3N4/rGO | 泡沫镍[ | 浸涂法 | MO,5mg/L | 180min内97% |
| 11 | GCNS | CCP[ | 化学气相沉积法 | MB,10mg/L | 180min内60% |
| 12 | CNTs/MCU-C3N4/GO | PVDF[ | 层层自组装法 | RhB,10mg/L | 100min内98.31% |
| 序号 | 光催化剂 | 支撑材料 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | g-C3N4 | Al2O3[ | 真空过滤法 | MB,5mg/L | 120min内99% |
| 2 | g-C3N4 | PAN[ | 真空过滤法 | MB,20mg/L | 120min内99% |
| 3 | g-C3N4 | PMMA[ | 真空过滤法 | RhB,10mg/L | 180min内83% |
| 4 | g-C3N4 | PVDF[ | 真空过滤法 | RhB,10mg/L | 250min内84.24% |
| 5 | Fe-POMs/g-C3N4 | PC[ | 真空过滤法 | MB,10mg/L | 80min内98.6% |
| 6 | GNPs/g-C3N4/GO | PC[ | 真空过滤法 | R6G,4.8mg/L | 120min内100% |
| 7 | g-C3N4 | 碳纤维布[ | 热凝聚法 | RhB,10mg/L | 30min内98% |
| 8 | g-C3N4 | Cu[ | 热凝聚法 | MB,3.2mg/L | 120min内85% |
| 9 | g-C3N4/TiO2 | 玻璃[ | 浸涂法 | RhB,5mg/L | 180min内31.2% |
| 10 | g-C3N4/rGO | 泡沫镍[ | 浸涂法 | MO,5mg/L | 180min内97% |
| 11 | GCNS | CCP[ | 化学气相沉积法 | MB,10mg/L | 180min内60% |
| 12 | CNTs/MCU-C3N4/GO | PVDF[ | 层层自组装法 | RhB,10mg/L | 100min内98.31% |
| 序号 | 光催化剂 | 聚合物基体 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | PS/g-C3N4/rGO/TiO2 | PS[ | 溶液混合法 | RTB,10mg/L | 90min内99% |
| 2 | CN/CA | CA[ | 溶液混合法 | RhB,10mg/L | 150min内99% |
| 3 | Ag/g-C3N4/PES | PES[ | 溶液混合法 | MO,10mg/L | 100min内77% |
| 4 | CA/β-CD/g-C3N4 | CA[ | 溶液混合法 | MB,6.4mg/L | 60min内99% |
| 5 | Ag/g-C3N4/Nafion | Nafion[ | 溶液混合法 | RhB,10mg/L | 150min内86% |
| 6 | Ag3PO4/g-C3N4/PVDF | PVDF[ | 溶液混合法 | RhB,10mg/L | 100min内97% |
| 7 | g-C3N4/TiO2/PAA/PTFE | PTFE[ | 等离子体增强法 | MB,10mg/L | 100min内78% |
| 8 | g-C3N4/TNA | TNA[ | 恒电位阳极氧化法 | RhB,3mg/L | 100min内60% |
| 9 | Fe3O4/g-C3N4/PVDF | PVDF[ | 磁感应冷冻铸造法 | RhB,10mg/L | 150min内97.8% |
| 10 | CS/PAN@FeOOH/g-C3N4 | PAN[ | 静电纺丝法 | MB,50mg/L | 100min内68.49% |
| 序号 | 光催化剂 | 聚合物基体 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | PS/g-C3N4/rGO/TiO2 | PS[ | 溶液混合法 | RTB,10mg/L | 90min内99% |
| 2 | CN/CA | CA[ | 溶液混合法 | RhB,10mg/L | 150min内99% |
| 3 | Ag/g-C3N4/PES | PES[ | 溶液混合法 | MO,10mg/L | 100min内77% |
| 4 | CA/β-CD/g-C3N4 | CA[ | 溶液混合法 | MB,6.4mg/L | 60min内99% |
| 5 | Ag/g-C3N4/Nafion | Nafion[ | 溶液混合法 | RhB,10mg/L | 150min内86% |
| 6 | Ag3PO4/g-C3N4/PVDF | PVDF[ | 溶液混合法 | RhB,10mg/L | 100min内97% |
| 7 | g-C3N4/TiO2/PAA/PTFE | PTFE[ | 等离子体增强法 | MB,10mg/L | 100min内78% |
| 8 | g-C3N4/TNA | TNA[ | 恒电位阳极氧化法 | RhB,3mg/L | 100min内60% |
| 9 | Fe3O4/g-C3N4/PVDF | PVDF[ | 磁感应冷冻铸造法 | RhB,10mg/L | 150min内97.8% |
| 10 | CS/PAN@FeOOH/g-C3N4 | PAN[ | 静电纺丝法 | MB,50mg/L | 100min内68.49% |
| [1] | LOTFI Safia, OUARDI Mohamed EL, AHSAINE Hassan Ait, et al. Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review[J]. Catalysis Reviews, 2024, 66(1): 214-258. |
| [2] | XIE Kangle, FANG Junfei, LI Le, et al. Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: A review[J]. Journal of Alloys and Compounds, 2022, 901: 163589. |
| [3] | NASROLLAHI Nazanin, GHALAMCHI Leila, VATANPOUR Vahid, et al. Photocatalytic-membrane technology: A critical review for membrane fouling mitigation[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 101-116. |
| [4] | ZHANG Huiru, WAN Yinhua, LUO Jianquan, et al. Drawing on membrane photocatalysis for fouling mitigation[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 14844-14865. |
| [5] | TRAN Duc-Trung, Jean-Pierre MÉRICQ, MENDRET Julie, et al. Influence of preparation temperature on the properties and performance of composite PVDF-TiO2 membranes[J]. Membranes, 2021, 11(11): 876. |
| [6] | SHAWKET Ali N, Nisreen S ALI, ALSALHY Qusay F. Systematic study for a comprehensive evaluation of PPSU modified with ZnO for ultrafiltration membranes: Morphological characteristics and performance[J]. Desalination and Water Treatment, 2023, 284: 27-38. |
| [7] | WU Tiantian, CAO Jinxing, JIANG Xiaohong. In situ synthesis of oxygen-deficient Cu2O on eggshell membranes and study of its efficient photocatalytic activity[J]. Applied Surface Science, 2023, 612: 155752. |
| [8] | MAHMOUDI Farzaneh, SARAVANAKUMAR Karunamoorthy, MAHESKUMAR Velusamy, et al. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress[J]. Journal of Hazardous Materials, 2022, 436: 129074. |
| [9] | DAI Yexin, LIU Miao, LI Jingyu, et al. Graphene-based membranes for water desalination: A literature review and content analysis[J]. Polymers, 2022, 14(19): 4246. |
| [10] | QAMAR Muhammad Azam, JAVED Mohsin, SHAHID Sammia, et al. Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review[J]. Heliyon, 2023, 9(1): e12685. |
| [11] | KROKE Edwin, SCHWARZ Marcus, Elisabeth HORATH-BORDON, et al. Tri-s-triazine derivatives. Part Ⅰ. From trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5): 508-512. |
| [12] | ZHANG Yuanjian, MORI Toshiyuki, NIU Li, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: Controlled electronic structure and enhanced optoelectronic conversion[J]. Energy & Environmental Science, 2011, 4(11): 4517-4521. |
| [13] | WANG Yang, GAO Baoyu, YUE Qinyan, et al. Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation[J]. Journal of Materials Chemistry A, 2020, 8(37): 19133-19155. |
| [14] | Wee-Jun ONG, TAN Lling-Lling, Yun Hau NG, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
| [15] | CAO Shaowen, Jingxiang LOW, YU Jiaguo, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
| [16] | WANG Xinchen, BLECHERT Siegfried, ANTONIETTI Markus. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2(8): 1596-1606. |
| [17] | CUI Yanhua, YANG Lili, ZHENG Jian, et al. Synergistic interaction of Z-scheme 2D/3D g-C3N4/BiOI heterojunction and porous PVDF membrane for greatly improving the photodegradation efficiency of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 586: 335-348. |
| [18] | YU Kun, HU Xiaofeng, YAO Kaiyuan, et al. Preparation of an ultrathin 2D/2D rGO/g-C3N4 nanocomposite with enhanced visible-light-driven photocatalytic performance[J]. RSC Advances, 2017, 7(58): 36793-36799. |
| [19] | JIA Changchao, YANG Lijun, ZHANG Yizhu, et al. Graphitic carbon nitride films: Emerging paradigm for versatile applications[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53571-53591. |
| [20] | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
| [21] | DONG Haoran, ZENG Guangming, TANG Lin, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research, 2015, 79: 128-146. |
| [22] | MURUGESAN Pramila, MOSES J A, ANANDHARAMAKRISHNAN C. Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: A review[J]. Journal of Materials Science, 2019, 54(19): 12206-12235. |
| [23] | MISHRA Amit, MEHTA Akansha, BASU Soumen, et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review[J]. Carbon, 2019, 149: 693-721. |
| [24] | ZHANG Chi, LI Yi, SHUAI Danmeng, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review[J]. Chemosphere, 2019, 214: 462-479. |
| [25] | CUI Yanjuan, TANG Yubin, WANG Xinchen. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants[J]. Materials Letters, 2015, 161: 197-200. |
| [26] | WANG Yangang, WANG Fei, ZUO Yuanhui, et al. Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine[J]. Materials Letters, 2014, 136: 271-273. |
| [27] | XU Zhuoqi, GUAN Leilei, LI Hui, et al. Structure transition mechanism of single-crystalline silicon, g-C3N4, and diamond nanocone arrays synthesized by plasma sputtering reaction deposition[J]. The Journal of Physical Chemistry C, 2015, 119(52): 29062-29070. |
| [28] | LI Qiaoqiao, ZHAO Wenli, ZHAI Zicheng, et al. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading[J]. Journal of Materials Science & Technology, 2020, 56: 216-226. |
| [29] | XU Fan, MO Zhao, YAN Jia, et al. Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation[J]. Journal of Colloid and Interface Science, 2020, 560: 555-564. |
| [30] | BAI Xiaojuan, YAN Shicheng, WANG Jiajia, et al. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material[J]. Journal of Materials Chemistry A, 2014, 2(41): 17521-17529. |
| [31] | LIU Jian, HUANG Jianhui, ZHOU Han, et al. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434-8440. |
| [32] | DONG Fan, ZHAO Zaiwang, XIONG Ting, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11392-11401. |
| [33] | QAMAR Muhammad Azam, JAVED Mohsin, SHAHID Sammia, et al. Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater[J]. Materials Research Bulletin, 2022, 147: 111630. |
| [34] | SAKTHIVEL Thangavel, RAMACHANDRAN Rajendran, KIRUBAKARAN Kiranpreethi. Photocatalytic properties of copper-two dimensional graphitic carbon nitride hybrid film synthesized by pyrolysis method[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2636-2642. |
| [35] | LEONG Sookwan, RAZMJOU Amir, WANG Kun, et al. TiO2 based photocatalytic membranes: A review[J]. Journal of Membrane Science, 2014, 472: 167-184. |
| [36] | WU Dandan, HU Shaonian, XUE Hongyun, et al. Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20223-20228. |
| [37] | HAN Xiaoxue, YUAN Aili, YAO Chengkai, et al. Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets[J]. Journal of Materials Science, 2019, 54(2): 1593-1605. |
| [38] | ZHANG Suyun, GAO Lina, FAN Dongliang, et al. Synthesis of boron-doped g-C3N4 with enhanced electro-catalytic activity and stability[J]. Chemical Physics Letters, 2017, 672: 26-30. |
| [39] | ZHENG Dandan, PANG Chenyang, LIU Yuxing, et al. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution[J]. Chemical Communications, 2015, 51(47): 9706-9709. |
| [40] | LIU Yanan, SU Yanlei, GUAN Jingyuan, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
| [41] | SHEN Xiaofeng, ZHANG Yan, DUOERKUN Gumila, et al. Vis-NIR light-responsive photocatalytic activity of C3N4-Ag-Ag2O heterojunction-decorated carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst[J]. ChemCatChem, 2019, 11(4): 1362-1373. |
| [42] | XUE Jinjuan, MA Shuaishuai, ZHOU Yuming, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9630-9637. |
| [43] | HU Chechia, WANG Maosheng, CHEN Chien-Hua, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 580: 1-11. |
| [44] | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5831-5841. |
| [45] | RAN Jin, PAN Ting, WU Yuying, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie International Edition, 2019, 58(46): 16463-16468. |
| [46] | OUYANG Liping, ZHAO Yaochao, JIN Guodong, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK[J]. Biomaterials, 2016, 83: 115-126. |
| [47] | KUMRU Baris, CRUZ Daniel, HEIL Tobias, et al. Electrostatic stabilization of carbon nitride colloids in organic solvents enables stable dispersions and transparent homogeneous CN films for optoelectronics[J]. Journal of the American Chemical Society, 2018, 140(50): 17532-17537. |
| [48] | YANG Zhao, ZHANG Yuanjian, SCHNEPP Zoe. Soft and hard templating of graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2015, 3(27): 14081-14092. |
| [49] | LI Xinhao, WANG Xinchen, ANTONIETTI Markus. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemical Science, 2012, 3(6): 2170-2174. |
| [50] | ZHANG Xiaodong, WANG Hongxia, WANG Hui, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials, 2014, 26(26): 4438-4443. |
| [51] | SUN Shaodong, LI Jia, CUI Jie, et al. Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1721-1727. |
| [52] | TIAN Na, ZHANG Yihe, LI Xiaowei, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38: 72-81. |
| [53] | ZHANG Jinshui, CHEN Yan, WANG Xinchen. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
| [54] | NIU Ping, ZHANG Lili, LIU Gang, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. |
| [55] | ZHANG Xiaodong, XIE Xiao, WANG Hui, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. |
| [56] | XU Jing, ZHANG Liwu, SHI Rui, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772. |
| [57] | LI Gengnan, LI Liang, YUAN Haiyang, et al. Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets[J]. Journal of Colloid and Interface Science, 2017, 495: 19-26. |
| [58] | ZHANG Jinshui, ZHANG Mingwen, LIN Lihua, et al. Sol processing of conjugated carbon nitride powders for thin-film fabrication[J]. Angewandte Chemie International Edition, 2015, 54(21): 6297-6301. |
| [59] | ZHANG Xiaoyu, WU Xinyu, ZHANG Jian, et al. Recent progress in graphitic carbon nitride-based materials for antibacterial applications: Synthesis, mechanistic insights, and utilization[J]. Microstructures, 2024, 4(2): 2024017. |
| [60] | YANG Shubin, FENG Xinliang, WANG Xinchen, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339-5343. |
| [61] | LU Xiuli, XU Kun, CHEN Pengzuo, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Journal of Materials Chemistry A, 2014, 2(44): 18924-18928. |
| [62] | DING Xing, XIAO Dong, JI Lei, et al. Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light[J]. Catalysis Science & Technology, 2018, 8(14): 3484-3492. |
| [63] | GAO Xiang, LI Yiming, YANG Xiaolong, et al. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A, 2017, 5(37): 19875-19883. |
| [64] | WANG Liqun, TONG Yueyu, FENG Jianmin, et al. G-C3N4-based films: A rising star for photoelectrochemical water splitting[J]. Sustainable Materials and Technologies, 2019, 19: e00089. |
| [65] | XIAO Kai, GIUSTO Paolo, WEN Liping, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie International Edition, 2018, 57(32): 10123-10126. |
| [66] | LIU Jian, WANG Hongqiang, CHEN Zupeng, et al. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application[J]. Advanced Materials, 2015, 27(4): 712-718. |
| [67] | SHEN Xiaofeng, ZHANG Yan, SHI Zhun, et al. Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading flowing wastewater[J]. Journal of Alloys and Compounds, 2021, 851: 156743. |
| [68] | LI Rui, REN Yuling, ZHAO Peixia, et al. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance[J]. Journal of Hazardous Materials, 2019, 365: 606-614. |
| [69] | WANG Siyu, DAI Xiaohui, LI Fei, et al. Floating and stable g-C3N4/PMMA/CFs porous film: An automatic photocatalytic reaction platform for dye water treatment under solar light[J]. Journal of Porous Materials, 2020, 27(2): 465-472. |
| [70] | HUANG Jinhui, HU Jianglin, SHI Yahui, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. Journal of Colloid and Interface Science, 2019, 541: 356-366. |
| [71] | LAN Huachun, WANG Feng, LAN Mei, et al. Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-Fenton-like membranes for wastewater treatment[J]. Environmental Science & Technology, 2019, 53(12): 6981-6988. |
| [72] | QU Lulu, WANG Na, XU Hui, et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering[J]. Advanced Functional Materials, 2017, 27(31): 1701714. |
| [73] | SHEN Xiaofeng, ZHANG Tianya, XU Pengfei, et al. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater[J]. Applied Catalysis B: Environmental, 2017, 219: 425-431. |
| [74] | ZHAO Wan, YANG Xiuru, LIU Chunxi, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant[J]. Nanomaterials, 2020, 10(4): 600. |
| [75] | WANG Xiuyuan, WANG Huihu, YU Kun, et al. Immobilization of 2D/2D structured g-C3N4 nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance[J]. Materials Research Bulletin, 2018, 97: 306-313. |
| [76] | DOU Tianwei, ZANG Linlin, ZHANG Yanhong, et al. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue[J]. Materials Letters, 2019, 244: 151-154. |
| [77] | SHI Yahui, WAN Dongjin, HUANG Jinhui, et al. Stable LBL self-assembly coating porous membrane with 3D heterostructure for enhanced water treatment under visible light irradiation[J]. Chemosphere, 2020, 252: 126581. |
| [78] | Suman DAS, MAHALINGAM Hari. Exploring the synergistic interactions of TiO2, rGO, and g-C3N4 catalyst admixtures in a polystyrene nanocomposite photocatalytic film for wastewater treatment: Unary, binary and ternary systems[J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103246. |
| [79] | WANG Siyu, LI Fei, DAI Xiaohui, et al. Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater[J]. Journal of Hazardous Materials, 2020, 384: 121417. |
| [80] | ZHANG Manying, LIU Ziya, GAO Yong, et al. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance[J]. RSC Advances, 2017, 7(68): 42919-42928. |
| [81] | LIU Zhongguo, XU Miao, YANG Ze, et al. Efficient removal of organic dyes from water by β-cyclodextrin functionalized graphite carbon nitride composite[J]. ChemistrySelect, 2017, 2(5): 1753-1758. |
| [82] | ZHANG Huoli, CAO Jianliang, KANG Peng, et al. Ag nanocrystals decorated g-C3N4/Nafion hybrid membranes: One-step synthesis and photocatalytic performance[J]. Materials Letters, 2018, 213: 218-221. |
| [83] | CUI Yanhua, YANG Lili, MENG Minjia, et al. Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B[J]. Korean Journal of Chemical Engineering, 2019, 36(2): 236-247. |
| [84] | CHI Lina, QIAN Yingjia, GUO Junqiu, et al. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning[J]. Catalysis Today, 2019, 335: 527-537. |
| [85] | ZHANG Qi, QUAN Xie, WANG Hua, et al. Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment[J]. Scientific Reports, 2017, 7(1): 3128. |
| [86] | LI Binrong, MENG Minjia, CUI Yanhua, et al. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method[J]. Chemical Engineering Journal, 2019, 365: 405-414. |
| [87] | ZHENG Shengyang, CHEN Haisheng, TONG Xin, et al. Integration of a photo-Fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 281: 119519. |
| [1] | WANG Shuai, QIAN Xiangchen, ZHANG Leiqi, WU Qiliang, LIU Min. Degradation mechanism of key components in proton exchange membrane fuel cells and proton exchange membrane electrolysis cells [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3804-3815. |
| [2] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [3] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [4] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [5] | ZHAO Wenwu, LIU Jinqiang, ZHOU Haijing, LIU Jian, HAO Bin. Synthesis of layered Bi2WO6 and mechanism of oxygen vacancy in photodegradation of TC [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5859-5870. |
| [6] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
| [7] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| [8] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
| [9] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
| [10] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
| [11] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
| [12] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
| [13] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
| [14] | GENG Qijin, CUI Wenwen, LIU Ying, YANG Jinmei, WANG Yuanfang, YANG Hualei, DING Jiazhong, ZANG Jiaxing, SUN Houwei. Evaluation method for dynamic scale of photocatalytic fluidized agglomerates [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6583-6588. |
| [15] | LI Kaipeng, LU Xiaomin, FU Jiao, PEI Feng, CHEN Xinzhi, LIAN Peichao. Preparation of N-doped reduced graphene oxide /black phosphorus quantum dot composite by low temperature photocatalysis and its performance as anode materials for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6336-6343. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |