Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5800-5818.DOI: 10.16085/j.issn.1000-6613.2024-1415
• Materials science and technology • Previous Articles
ZHANG Ting1(
), SU Pengyu1, GAO Xiaoming1(
), MA Haixia2
Received:2024-08-30
Revised:2025-04-07
Online:2025-11-10
Published:2025-10-25
Contact:
GAO Xiaoming
通讯作者:
高晓明
作者简介:张婷(1989—),女,博士,讲师,研究方向为金属基燃料的制备与能量可控释放。E-mail:zhangtsust@163.com。
基金资助:CLC Number:
ZHANG Ting, SU Pengyu, GAO Xiaoming, MA Haixia. Progress on amorphous materials applied in energy and catalysis[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5800-5818.
张婷, 苏鹏宇, 高晓明, 马海霞. 非晶材料在能源催化领域的研究进展[J]. 化工进展, 2025, 44(10): 5800-5818.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1415
| 合成方法 | 催化剂 | 应用领域 | 参考文献 |
|---|---|---|---|
| 水热法 | 非晶态MoO x -Rh | 电催化HER | [ |
| 非晶态CoMoO4 | 电催化HER | [ | |
| 晶态/非晶态磷酸镍锰异质结构 | 储能 | [ | |
| 非晶态CoFe氧化物 | 电催化HER/OER | [ | |
| 溶胶-凝胶法 | 非晶态TiO2 | 光催化降解 | [ |
| 非晶态a-NiFeCeOOH | 电催化OER | [ | |
| 非晶态TiO2介孔纳米片 | 锂电池 | [ | |
| 非晶态氢氧化铟 | 电催化CO2还原反应(CO2RR) | [ | |
| 光化学沉积 | 非晶态CoMn2O x | 储能 | [ |
| 非晶态MnO x /Ti4O7 | 电催化OER/ORR | [ | |
| 非晶态钙掺杂钴酸镧 | 电催化OER | [ | |
| 非晶态氧化铁 | 电催化OER | [ | |
| 共沉淀法 | 非晶态金属氢氧化物 | 电催化 | [ |
| 非晶态NiFeMo | 电催化OER | [ | |
| 非晶-晶态PdCo-Co3S4异质结 | 海水电解HER | [ | |
| 非晶态BiSbO x | 电催化CO2RR | [ | |
| 非晶-晶态CeO x -Sn异质结 | CO2RR | [ | |
| 非晶MnO2包袱N,P,S共掺杂碳球(A-MnO2/NSPC) | 电催化ORR/OER | [ | |
| 非晶Pt x Ru y Se z | 电催化HER | [ | |
| 电化学法 | 非晶态CoFe-H | 电催化OER | [ |
| 非晶态磷硒化钴 | 电催化HER/OER | [ | |
| 非晶态NiFe-OH/NiFeP | 电催化OER | [ | |
| 磁感应加热 | 非晶态MoS x | 电催化HER | [ |
| 溶液相还原法 | 非晶态Ni-Fe | 电催化HER | [ |
| 合成方法 | 催化剂 | 应用领域 | 参考文献 |
|---|---|---|---|
| 水热法 | 非晶态MoO x -Rh | 电催化HER | [ |
| 非晶态CoMoO4 | 电催化HER | [ | |
| 晶态/非晶态磷酸镍锰异质结构 | 储能 | [ | |
| 非晶态CoFe氧化物 | 电催化HER/OER | [ | |
| 溶胶-凝胶法 | 非晶态TiO2 | 光催化降解 | [ |
| 非晶态a-NiFeCeOOH | 电催化OER | [ | |
| 非晶态TiO2介孔纳米片 | 锂电池 | [ | |
| 非晶态氢氧化铟 | 电催化CO2还原反应(CO2RR) | [ | |
| 光化学沉积 | 非晶态CoMn2O x | 储能 | [ |
| 非晶态MnO x /Ti4O7 | 电催化OER/ORR | [ | |
| 非晶态钙掺杂钴酸镧 | 电催化OER | [ | |
| 非晶态氧化铁 | 电催化OER | [ | |
| 共沉淀法 | 非晶态金属氢氧化物 | 电催化 | [ |
| 非晶态NiFeMo | 电催化OER | [ | |
| 非晶-晶态PdCo-Co3S4异质结 | 海水电解HER | [ | |
| 非晶态BiSbO x | 电催化CO2RR | [ | |
| 非晶-晶态CeO x -Sn异质结 | CO2RR | [ | |
| 非晶MnO2包袱N,P,S共掺杂碳球(A-MnO2/NSPC) | 电催化ORR/OER | [ | |
| 非晶Pt x Ru y Se z | 电催化HER | [ | |
| 电化学法 | 非晶态CoFe-H | 电催化OER | [ |
| 非晶态磷硒化钴 | 电催化HER/OER | [ | |
| 非晶态NiFe-OH/NiFeP | 电催化OER | [ | |
| 磁感应加热 | 非晶态MoS x | 电催化HER | [ |
| 溶液相还原法 | 非晶态Ni-Fe | 电催化HER | [ |
| [18] | LI Min, LI Min, ZHAO Mingshu, et al. Rational design of crystalline/amorphous nickel manganese phosphate octahydrate heterostructure for high-performance aqueous and all-solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2024, 482: 148895. |
| [19] | LI Xingyun, XIAO Liangping, ZHOU Ling, et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting[J]. Angewandte Chemie International Edition, 2020, 59(47): 21106-21113. |
| [20] | YI Chuan, LIAO Qi, DENG Wei, et al. The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation[J]. Science of the Total Environment, 2019, 684: 527-536. |
| [21] | BAI Jirong, CHEN Changfan, LIAN Yuebin, et al. Role of amorphous engineering and cerium doping in NiFe oxyhydroxide for electrocatalytic water oxidation[J]. Journal of Colloid and Interface Science, 2024, 663: 280-286. |
| [22] | LIU Yuan, DING Chenfeng, YAN Xiaodong, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage[J]. Chemical Engineering Journal, 2021, 420: 129894. |
| [23] | ZHAO Jiayue, HUANG Kai, LIU Changwei, et al. Electro-induced crystallization over amorphous indium hydroxide gels toward ampere- level current density formate electrosynthesis[J]. Advanced Functional Materials, 2024, 34(24): 2316167. |
| [24] | ZHAO Linzhe, LI Yongdan, ZHANG Cuijuan. Amorphous CoMn binary oxides loaded on porous carbon nanosheet as bifunctional electrocatalysts for rechargeable zinc-air battery[J]. Journal of Energy Storage, 2023, 65: 107303. |
| [25] | BAI Fan, HE Yuxiu, XU Lincheng, et al. Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition[J]. RSC Advances, 2022, 12(4): 2408-2415. |
| [26] | ZHANG Cuijuan, ZHANG Xinyue, DALY Katelynn, et al. Water oxidation catalysis: Tuning the electrocatalytic properties of amorphous lanthanum cobaltite through calcium doping[J]. ACS Catalysis, 2017, 7(9): 6385-6391. |
| [27] | SMITH Rodney D L, PRÉVOT Mathieu S, FAGAN Randal D, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis[J]. Science, 2013, 340(6128): 60-63. |
| [28] | KIM Young, KIM Jin Hyun, Yim Hyun JO, et al. Precipitating metal nitrate deposition of amorphous metal oxyhydroxide electrodes containing Ni, Fe, and Co for electrocatalytic water oxidation[J]. ACS Catalysis, 2019, 9(10): 9650-9662. |
| [29] | DUAN Yu, YU Ziyou, HU Shaojin, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis[J]. Angewandte Chemie International Edition, 2019, 58(44): 15772-15777. |
| [30] | SUN Pengliang, ZHENG Xiong, CHEN Anran, et al. Constructing amorphous-crystalline interfacial bifunctional site island-sea synergy by morphology engineering boosts alkaline seawater hydrogen evolution[J]. Advanced Science, 2024, 11(24): 2309927. |
| [31] | LI Xin, WANG Junhao, YUAN Chenyue, et al. A unique amorphous porous BiSbO x nanotube with abundant unsaturated Sb-stabilized BiO8- x sites for efficient CO2 electroreduction in a wide potential window[J]. Advanced Functional Materials, 2024, 34(37): 2402220. |
| [32] | ZHU Ying, SUN Xiang, ZHANG Rong, et al. Interfacial electronic interaction in amorphous-crystalline CeO x -Sn heterostructures for optimizing CO2 to formate conversion[J]. Small, 2024, 20(32): 2400191. |
| [33] | HUO Liping, Minghui LYU, LI Mingjin, et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis[J]. Advanced Materials, 2024, 36(18): 2312868. |
| [34] | ZENG Biao, LIU Xinzheng, WAN Li, et al. Grafting ultra-fine nanoalloys with amorphous skin enables highly active and long-lived acidic hydrogen production[J]. Angewandte Chemie International Edition, 2024, 63(15): e202400582. |
| [35] | LIU Wei, LIU Hu, DANG Lianna, et al. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution[J]. Advanced Functional Materials, 2017, 27(14): 1603904. |
| [36] | SHI Yue, ZHOU Shuanglong, LIU Jiaxin, et al. An integrated amorphous cobalt phosphoselenide electrocatalyst with high mass activity boosts alkaline overall water splitting[J]. Applied Catalysis B: Environmental, 2024, 341: 123326. |
| [37] | LIANG Hanfeng, GANDI Appala N, XIA Chuan, et al. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications[J]. ACS Energy Letters, 2017, 2(5): 1035-1042. |
| [38] | LIU Qiming, NICHOLS Forrest, BHULLER Amrinder, et al. Ultrafast synthesis of amorphous molybdenum sulfide by magnetic induction heating for hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2024, 342: 123399. |
| [39] | QIU Yang, XIN Le, LI Wenzhen. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte[J]. Langmuir, 2014, 30(26): 7893-7901. |
| [40] | LEE YU min, Byeong Min LIM, LEE Hong-Sub. Selector-less crossbar array resistive RAM based on TiO2 fabricated by photochemical metal-organic deposition[J]. Journal of Alloys and Compounds, 2024, 977: 173312. |
| [41] | HAN Xiao, WU Geng, HE Dongsheng, et al. Single-element amorphous metals[J]. Interdisciplinary Materials, 2024, 3(4): 480-491. |
| [42] | CHANG Jiuli, WANG Wenyu, WU Dapeng, et al. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading[J]. Journal of Colloid and Interface Science, 2023, 648: 259-269. |
| [43] | LU Bingzhang, LIU Qiming, WANG Chunyang, et al. Ultrafast preparation of nonequilibrium FeNi spinels by magnetic induction heating for unprecedented oxygen evolution electrocatalysis[J]. Research, 2022, 2022: 9756983. |
| [44] | LI Bo, CHEN Shuangming, TIAN Jie, et al. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction[J]. Nano Research, 2017, 10(11): 3629-3637. |
| [45] | INDRA Arindam, MENEZES Prashanth W, SAHRAIE Nastaran Ranjbar, et al. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides[J]. Journal of the American Chemical Society, 2014, 136(50): 17530-17536. |
| [46] | LU Bowen, Rongmin DUN, WANG Wei, et al. Electroless plating synthesis of bifunctional crystalline/amorphous Pd-NiFeB heterostructure catalysts for boosted electrocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2024, 342: 123343. |
| [47] | Karl DELBÉ, CHABERT France. Raman spectroscopy investigation on amorphous polyetherketoneketone (PEKK)[J]. Vibrational Spectroscopy, 2023, 129: 103620. |
| [48] | CHEN Gao, ZHOU Wei, GUAN Daqin, et al. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3- δ nanofilms with tunable oxidation state[J]. Science Advances, 2017, 3(6): e1603206. |
| [49] | HESS Christian. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions[J]. Chemical Society Reviews, 2021, 50(5): 3519-3564. |
| [50] | COLE K M, KIRK D W, THORPE S J. In situ Raman study of amorphous and crystalline Ni-Co alloys for the alkaline oxygen evolution reaction[J]. Journal of the Electrochemical Society, 2018, 165(15): J3122-J3129. |
| [51] | ZHANG Guixin, CHEN Xiaorong, YU Xinmeng, et al. Crystalline-amorphous heterostructure on the phosphatized P-CoS2/CNT for augmenting the catalytic conversion kinetics of Li-S batteries[J]. Chemical Engineering Journal, 2024, 488: 150696. |
| [52] | XU Huimin, HUANG Chenjin, ZHU Hongrui, et al. Amorphous P- CoOX promotes the formation of hypervalent Ni species in NiFe LDHs by amorphous/crystalline interfaces for excellent catalytic performance of oxygen evolution reaction[J]. Small, 2024,20(37): 2400201. |
| [53] | OVADYAHU Zvi. Structural dynamics in thermal treatment of amorphous indium oxide films[J]. Physica Status Solidi (b), 2020, 257(1): 1900310. |
| [54] | LIU Jun, WANG Liangliang, FEI Zhaoyang, et al. Structure and properties of amorphous CeO2@TiO2 catalyst and its performance in the selective catalytic reduction of NO with NH3 [J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 954-960. |
| [55] | JING Haiyan, ZHAO Peng, LIU Cai, et al. Surface-enhanced Raman spectroscopy for boosting electrochemical CO2 reduction on amorphous-surfaced tin oxide supported by MXene[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59524-59533. |
| [56] | JOSHI Sindhur, RODNEY John D, UDAYASHANKAR N K. Peculiarities of electrical switching and phase transition dynamics in bismuth-infused Se-Te chalcogenide glasses: From bulk to thin film devices[J].ACS Applied Electronic Materials, 2024, 6(5): 3574-3588. |
| [57] | JANOVSZKY Dora, SVEDA Maria, SYCHEVA Anna, et al. Amorphous alloys and differential scanning calorimetry (DSC)[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(13): 7141-7157. |
| [58] | 张金勇, 赵聪聪, 吴宜谨, 等. (Fe0.33Co0.33Ni0.33)84- x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224. |
| ZHANG Jinyong, ZHAO Congcong, WU Yijin, et al. Structural characteristic and crystallization behavior of the (Fe0.33Co0.33Ni0.33)84- x Cr8Mn8B x high-entropy-amorphous alloy ribbons[J]. Acta Metallurgica Sinica, 2022, 58(2): 215-224. | |
| [59] | SERGIIENKO Ruslan A, SHCHERETSKYI Oleksandr A, ZADOROZHNYY Vladislav Yu, et al. Investigation of Zr55Cu30Al10Ni5 bulk amorphous alloy crystallization[J]. Journal of Alloys and Compounds, 2019, 791: 477-482. |
| [60] | LI Peng, WANG Hui, JIANG Wei, et al. Promoting the cycling stability of amorphous MgNi-based alloy electrodes by mitigating hydrogen-induced crystallization[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6701-6708. |
| [61] | WANG Zhenlong, WANG Kean, XIAO Xuechun, et al. Transition from amorphous to crystalline in FeW oxides: Alterations in active center spin state to improve OER performance[J]. Chemical Engineering Journal, 2024, 496: 154218. |
| [62] | ZHAO Jingjing, GUO Yanna, LI Shuangjun, et al. Amorphous-crystalline porous ruthenium selenide as highly efficient electrocatalysts for alkaline hydrogen evolution[J]. Chemical Engineering Journal, 2024, 485: 150074. |
| [63] | CAI Zhi, LI Lidong, ZHANG Youwei, et al. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(13): 4189-4194. |
| [64] | ZHANG Junbo, YIN Rongguan, SHAO Qi, et al. Oxygen vacancies in amorphous InO x nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2019, 58(17): 5609-5613. |
| [1] | KANG Jianxin, YANG Xiuyi, HU Qi, et al. Recent progress of amorphous nanomaterials[J]. Chemical Reviews, 2023, 123(13): 8859-8941. |
| [2] | TIAN Huifeng, YAO Zhixin, LI Zhenjiang, et al. Unlocking more potentials in two-dimensional space: Disorder engineering in two-dimensional amorphous carbon[J]. ACS Nano, 2023, 17(24): 24468-24478. |
| [3] | JABBOUR Ribal, ASHLING Christopher W, ROBINSON Thomas C, et al. Unravelling the molecular structure and confining environment of an organometallic catalyst heterogenized within amorphous porous polymers[J]. Angewandte Chemie International Edition, 2023, 62(44): e202310878. |
| [4] | PARK Kyoung Ryeol, TRAN Duy Thanh, NGUYEN Thanh Tuan, et al. Copper-Incorporated heterostructures of amorphous NiSe x /Crystalline NiSe2 as an efficient electrocatalyst for overall water splitting[J]. Chemical Engineering Journal, 2021, 422: 130048. |
| [5] | SERAIRI Lisa, SANTILLO Chiara, BASSET Philippe, et al. Boosting contact electrification by amorphous polyvinyl alcohol endowing improved contact adhesion and electrochemical capacitance[J]. Advanced Materials, 2024, 36(27): 2403366. |
| [6] | KALE Shital B, BHARDWAJ Aman, LOKHANDE Vaibhav C, et al. Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: Meeting the fundamental requirements of an electrocatalyst[J]. Chemical Engineering Journal, 2021, 405: 126993. |
| [7] | Bon-Ryul KOO, Myeong-Hun JO, KIM Kue-Ho, et al. Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices[J]. Chemical Engineering Journal, 2021, 424: 130383. |
| [8] | CHANG Yuming, WEN Yu Ching, CHEN Tsung-Yi, et al. Understanding charge storage mechanisms for amorphous MoSnSe1.5S1.5 nanoflowers in alkali‐ion batteries[J]. Advanced Energy Materials, 2023, 13(29): 2301125. |
| [9] | STRAND Jack, SHLUGER Alexander L. On the structure of oxygen deficient amorphous oxide films[J]. Advanced Science, 2024, 11(8): 2306243. |
| [10] | LI Neng, PENG Jiahe, ZHANG Peng, et al. Amorphous MXene opens new perspectives[J]. Advanced Materials, 2023, 35(26): 2300067. |
| [11] | WU Geng, ZHENG Xusheng, CUI Peixin, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10: 4855. |
| [12] | LONG Haoyu, GAO Duoduo, WANG Ping, et al. Amorphization-induced reverse electron transfer in NiB cocatalyst for boosting photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2024, 340: 123270. |
| [13] | HU Zenghui, HAO Xuqiang, FAN Yu, et al. Graphdiyne (g-Cn H2 n-2) nanosheets encapsulated Cu-Co Prussian blue Analogues formed double S-scheme heterojunction for wide spectrum photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2024, 481: 148455. |
| [14] | 宋远航, 曲文刚, 赵凤起, 等. 非晶态纳米NiO的制备及其对AP和GAP基推进剂的催化性能[J]. 火炸药学报, 2022, 45(6): 841-847. |
| SONG Yuanhang, QU Wengang, ZHAO Fengqi, et al. Preparation of amorphous nano-NiO and its catalytic performance on AP and GAP based propellant[J]. Chinese Journal of Explosives & Propellants, 2022, 45(6): 841-847. | |
| [15] | WANG Xiaohan, TIAN Han, YU Xu, et al. Advances and insights in amorphous electrocatalyst towards water splitting[J]. Chinese Journal of Catalysis, 2023, 51: 5-48. |
| [16] | PAN Shuyuan, LI Chen, XIONG Tiantian, et al. Hydrogen spillover in MoO x Rh hierarchical nanosheets boosts alkaline HER catalytic activity[J]. Applied Catalysis B: Environmental, 2024, 341: 123275. |
| [17] | ZHAO Jinxiu, REN Xiang, MA Hongmin, et al. Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10093-10098. |
| [65] | DONG Chao, LIU Ziwei, LIU Jieyu, et al. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction[J]. Small, 2017, 13(16): 1603903. |
| [66] | YANG Furong, YE Jinyu, GAO Lei, et al. Ultrathin PtNiGaSnMoRe senary nanowires with partial amorphous structure enable remarkable methanol oxidation electrocatalysis[J]. Advanced Energy Materials, 2023, 13(34): 2301408. |
| [67] | ZHANG Shumin, ZHAO Feipeng, CHANG Lo-Yueh, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. Journal of the American Chemical Society, 2024, 146(5): 2977-2985. |
| [68] | LU Pushun, GONG Sheng, GUO Fuliang, et al. Amorphous bimetallic polysulfide for all-solid-state batteries with superior capacity and low-temperature tolerance[J]. Nano Energy, 2023, 118: 109029. |
| [69] | LI Ruilong, RAO Dewei, ZHOU Jianbin, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries[J]. Nature Communications, 2021, 12(1): 3102. |
| [70] | ZHENG Tian, HU Pengfei, WANG Zhongchang, et al. 2D amorphous iron selenide sulfide nanosheets for stable and rapid sodium-ion storage[J]. Advanced Materials, 2023, 35(48): 2306577. |
| [71] | WULAN Ba Ri, YI Shasha, LI Sijia, et al. Amorphous nickel pyrophosphate modified graphitic carbon nitride: An efficient photocatalyst for hydrogen generation from water splitting[J]. Applied Catalysis B: Environmental, 2018, 231: 43-50. |
| [72] | ZHANG Xinlei, WU Fei, LI Guicun, et al. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiS x on crystalline CdS for expediting photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2024, 342: 123398. |
| [73] | ZHANG Congmin, XU Yanling, Chade LYU, et al. Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264: 118416. |
| [74] | LIU Juzhe, GUO Lin. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis[J]. Matter, 2021, 4(9): 2850-2873. |
| [1] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [2] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
| [3] | WU Jinghang, CHEN Chenju, LIANG Jie, ZHANG Chunlei. Recent progress in the synthesis of primary amine via direct reductive amination of aldehydes and ketones [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2981-2992. |
| [4] | CHEN Yaju, REN Qinggang, ZHOU Xiantai, JI Hongbing. Recent advances in porous organic polymers for the synthesis of cyclic carbonates from carbon dioxide [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3564-3583. |
| [5] | WU Miaojiang, SUN Peng, LI Fuwei. Synthesis of phosphorus-containing porous organic polymers and their applications in heterogeneous catalysis [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1983-2004. |
| [6] | Rizhi CHEN, Hong JIANG, Yiqun FAN, Congjie GAO, Weihong XING. Perspective on membrane dispersion technology and its enhanced reaction processes [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4812-4822. |
| [7] | Lungang CHEN,Xinghua ZHANG,Qi ZHANG,Chenguang WANG,Longlong MA. Progress in aviation biofuel technology by catalysis synthesis of platform molecules from lignocelluloses depolymerization [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1269-1282. |
| [8] | ZHOU Ying, CHEN Liyu, LI Yingwei. Nanomaterials as heterogeneous catalysts for room-temperature catalytic transformations [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3530-3539. |
| [9] | HE Nianzhi,ZHANG Xueqin,XIAO Meitian. Progress of heterogeneous asymmetric hydrogenation on chirally modified catalysts [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2694-2701. |
| [10] | YANG Meimei1,ZHOU Shaoqi1,2,3,ZHENG Yongxin1,ZHENG Ke1. Sodium peroxydisulfate activated by zero-valent iron for degradation of methyl orange [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 2093-2096. |
| [11] | HE Yunbing,JI Hongbing,WANG Lefu. Development of the removal of indoor formaldehyde with catalytic oxidation [J]. Chemical Industry and Engineering Progree, 2007, 26(8): 1104-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |