Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5789-5799.DOI: 10.16085/j.issn.1000-6613.2024-1361
• Materials science and technology • Previous Articles
GAO Yi(
), HU Chenxi, GUO Zhaoyan, RU Yue(
), QI Guicun, JIANG Chao
Received:2024-08-20
Revised:2024-10-29
Online:2025-11-10
Published:2025-10-25
Contact:
RU Yue
通讯作者:
茹越
作者简介:高易(1996—),女,硕士研究生,研究方向为高分材料科学与工程。E-mail:gaoy.bjhy@sinopec.com。
基金资助:CLC Number:
GAO Yi, HU Chenxi, GUO Zhaoyan, RU Yue, QI Guicun, JIANG Chao. Research progress on encapsulation technology of phase change materials[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5789-5799.
高易, 胡晨曦, 郭照琰, 茹越, 戚桂村, 姜超. 相变储能材料封装技术研究进展[J]. 化工进展, 2025, 44(10): 5789-5799.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1361
| 分类 | PCMs | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|---|
| 无机类 | |||
| 结晶水合盐 | CaCl2·6H2O | 29 | 190.8 |
| Na2SO4·10H2O | 32.4 | 241.0 | |
| Na2HPO4·12H2O | 35.0 | 256.6 | |
| CH3COONa·3H2O | 58.6 | 286.3 | |
| Ba(OH)2·8H2O | 78.0 | 278.0 | |
| Mg(NO3)2·6H2O | 89.9 | 167.0 | |
| 熔融盐 | NaNO3 | 306 | 182.0 |
| Li2CO3 | 732 | 509 | |
| KCl | 771 | 353 | |
| K2CO3 | 897 | 235.8 | |
| 单金属 | Zn | 419.5 | 103.1 |
| Mg | 651.0 | 376.8 | |
| Al | 660.2 | 395.4 | |
| 合金 | Al-4Mg-6Zn | 446.2~590.2 | 290.8 |
| Mg-25Cu-15Zn | 452.0 | 254.0 | |
| Zn-45Cu-6Mg | 703.0 | 176.0 | |
| 有机类 | |||
| 石蜡类 | 十二烷 | -12 | 216.0 |
| 十四烷 | 4.5~4.6 | 215.0 | |
| 正十六烷 | 18.0 | 210.0~238.0 | |
| 正十八烷 | 28.0 | 243.5 | |
| 正二十一烷 | 37.0~41.0 | 201.0 | |
| 非石蜡类 | 甲酸 | 7.80 | 247.0 |
| 硬脂酸丁酯 | 19.0 | 140.0 | |
| 聚乙二醇 | 35.5 | 265.0 | |
| PEF/2IPDI/BDO | 40.6 | 77.2 | |
| 十六酸 | 57.8 | 185.40 |
| 分类 | PCMs | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|---|
| 无机类 | |||
| 结晶水合盐 | CaCl2·6H2O | 29 | 190.8 |
| Na2SO4·10H2O | 32.4 | 241.0 | |
| Na2HPO4·12H2O | 35.0 | 256.6 | |
| CH3COONa·3H2O | 58.6 | 286.3 | |
| Ba(OH)2·8H2O | 78.0 | 278.0 | |
| Mg(NO3)2·6H2O | 89.9 | 167.0 | |
| 熔融盐 | NaNO3 | 306 | 182.0 |
| Li2CO3 | 732 | 509 | |
| KCl | 771 | 353 | |
| K2CO3 | 897 | 235.8 | |
| 单金属 | Zn | 419.5 | 103.1 |
| Mg | 651.0 | 376.8 | |
| Al | 660.2 | 395.4 | |
| 合金 | Al-4Mg-6Zn | 446.2~590.2 | 290.8 |
| Mg-25Cu-15Zn | 452.0 | 254.0 | |
| Zn-45Cu-6Mg | 703.0 | 176.0 | |
| 有机类 | |||
| 石蜡类 | 十二烷 | -12 | 216.0 |
| 十四烷 | 4.5~4.6 | 215.0 | |
| 正十六烷 | 18.0 | 210.0~238.0 | |
| 正十八烷 | 28.0 | 243.5 | |
| 正二十一烷 | 37.0~41.0 | 201.0 | |
| 非石蜡类 | 甲酸 | 7.80 | 247.0 |
| 硬脂酸丁酯 | 19.0 | 140.0 | |
| 聚乙二醇 | 35.5 | 265.0 | |
| PEF/2IPDI/BDO | 40.6 | 77.2 | |
| 十六酸 | 57.8 | 185.40 |
| 封装方法 | 粒径范围/µm | 封装率% | 适用壳材料 | 适用PCM | 优势 | 劣势 |
|---|---|---|---|---|---|---|
| 喷雾干燥 | 0.1~5000 | 38~63 | LDPE/EVA 明胶/阿拉伯树胶 钛材料 | 石蜡 | 成本低 适用广泛 易规模化生产 | 易团聚 包覆不完善 |
| 复凝聚法 | 2~1000 | 6~68 | 明胶/阿拉伯树胶 SF/CHI | 石蜡 脂肪酸 | 适用广泛 粒径易调控 | 需要加入硬化剂 规模化生产困难 易团聚 |
| 溶液-凝胶法 | 0.2~20 | 30~87 | 二氧化硅 | 石蜡 | 热传导好 反应温度低 | 反应过程复杂 干燥过程易开裂 |
| 界面聚合法 | 0.5~1000 | 15~88 | PU 脲醛树脂 蜜胺树脂 | 石蜡 | 包封效率高 致密性良好 反应效率快 | 部分单体残留 |
| 悬浮聚合法 | 2~4000 | 7~75 | 聚酯 PMMA MMA/St | 石蜡 | 封装效率较高 粒径可控 工艺简单 | 部分单体残留 成本较高 壳材选择有限 |
| 乳液聚合法 | 0.05~5 | 14~67 | 聚酯 PMMA | 石蜡 | 反应条件温和 体系稳定性好 粒径均匀 | 部分单体残留 后处理过程复杂 乳液稳定性控制 |
| 封装方法 | 粒径范围/µm | 封装率% | 适用壳材料 | 适用PCM | 优势 | 劣势 |
|---|---|---|---|---|---|---|
| 喷雾干燥 | 0.1~5000 | 38~63 | LDPE/EVA 明胶/阿拉伯树胶 钛材料 | 石蜡 | 成本低 适用广泛 易规模化生产 | 易团聚 包覆不完善 |
| 复凝聚法 | 2~1000 | 6~68 | 明胶/阿拉伯树胶 SF/CHI | 石蜡 脂肪酸 | 适用广泛 粒径易调控 | 需要加入硬化剂 规模化生产困难 易团聚 |
| 溶液-凝胶法 | 0.2~20 | 30~87 | 二氧化硅 | 石蜡 | 热传导好 反应温度低 | 反应过程复杂 干燥过程易开裂 |
| 界面聚合法 | 0.5~1000 | 15~88 | PU 脲醛树脂 蜜胺树脂 | 石蜡 | 包封效率高 致密性良好 反应效率快 | 部分单体残留 |
| 悬浮聚合法 | 2~4000 | 7~75 | 聚酯 PMMA MMA/St | 石蜡 | 封装效率较高 粒径可控 工艺简单 | 部分单体残留 成本较高 壳材选择有限 |
| 乳液聚合法 | 0.05~5 | 14~67 | 聚酯 PMMA | 石蜡 | 反应条件温和 体系稳定性好 粒径均匀 | 部分单体残留 后处理过程复杂 乳液稳定性控制 |
| [1] | DE LA RUE DU CAN Stephane, PUDLEINER David, PIELLI Katrina. Energy efficiency as a means to expand energy access: A Uganda roadmap[J]. Energy Policy, 2018, 120: 354-364. |
| [2] | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
| [3] | CONGEDO Paolo Maria, BAGLIVO Cristina, CARRIERI Lorenzo. Application of an unconventional thermal and mechanical energy storage coupled with the air conditioning and domestic hot water systems of a residential building[J]. Energy and Buildings, 2020, 224: 110234. |
| [4] | Zvonimir ŠIMIĆ, Danijel TOPIĆ, Goran KNEŽEVIĆ, et al. Battery energy storage technologies overview[J]. International Journal of Electrical and Computer Engineering Systems, 2021, 12(1): 53-65. |
| [5] | AFTAB Waseem, HUANG Xinyu, WU Wenhao, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424. |
| [6] | YU N, WANG R Z, LI T X, et al. Progress in sorption thermal energy storage[M]//Energy solutions to combat global warming. Cham: Springer International Publishing, 2016: 541-572. |
| [7] | HUANG Yongcai, STONEHOUSE Alex, ABEYKOON Chamil. Encapsulation methods for phase change materials—A critical review[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123458. |
| [8] | RAAM DHEEP G, SREEKUMAR A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials—A review[J]. Energy Conversion and Management, 2014, 83: 133-148. |
| [9] | WENG Keyu, XU Xinyue, CHEN Yuanyuan, et al. Development and applications of multifunctional microencapsulated PCMs: A comprehensive review[J]. Nano Energy, 2024, 122: 109308. |
| [10] | CHAUDHARI Soham Sharad, PATIL Niraj Govinda, MAHANWAR Prakash Anna. A review on microencapsulated phase change materials in building materials[J]. Journal of Coatings Technology and Research, 2024, 21(1): 173-198. |
| [11] | 周莹, 王双喜. 复合相变储能保温砂浆在日光温室中的应用效果[J]. 农业工程学报, 2017, 33(20): 190-196. |
| ZHOU Ying, WANG Shuangxi. Application effect of composite phase change energy storage thermal insulation mortar in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 190-196. | |
| [12] | JAYATHUNGA D S, KARUNATHILAKE H P, NARAYANA M, et al. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications—A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113904. |
| [13] | AKEIBER Hussein, NEJAT Payam, MAJID Muhd Zaimi Abd, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1470-1497. |
| [14] | 陈云博, 朱翔宇, 李祥, 等. 相变调温纺织品制备方法的研究进展 [J]. 纺织学报, 2021, 42(1): 167-174. |
| CHEN Yunbo, ZHU Xiangyu, LI Xiang, et al. Recent advance in preparation of thermo-regulating textiles based on phase change materials[J]. Journal of Textile Research, 2021, 42(1): 167-174. | |
| [15] | HOSSAIN Md Tanvir, SHAHID Md Abdus, Md Yousuf ALI, et al. Fabrications, classifications, and environmental impact of PCM-incorporated textiles: Current state and future outlook[J]. ACS Omega, 2023, 8(48): 45164-45176. |
| [16] | 张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13): 26-32. |
| ZHANG Helei, FANG Xiande, ZHAO Yingjie. Progress in phase change materials and technologies[J]. Materials Review, 2014, 28(13): 26-32. | |
| [17] | LIN Yaxue, JIA Yuting, ALVA Guruprasad, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
| [18] | MAGENDRAN Suhanyaa S, KHAN Fahad Saleem Ahmed, MUBARAK N M, et al. Synthesis of organic phase change materials (PCM) for energy storage applications: A review[J]. Nano-Structures & Nano-Objects, 2019, 20: 100399. |
| [19] | 黄港, 邱玮, 黄伟颖, 等. 相变储能材料的研究与发展[J]. 材料科学与工艺, 2022, 30(3): 80-96. |
| HUANG Gang, QIU Wei, HUANG Weiying, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022, 30(3): 80-96. | |
| [20] | ATINAFU Dimberu G, Yong Sik OK, Harn Wei KUA, et al. Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry[J]. Applied Thermal Engineering, 2020, 181: 115960. |
| [21] | YU Kunyang, LIU Yushi, YANG Yingzi. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties[J]. Applied Energy, 2021, 292: 116845. |
| [22] | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
| LIU Wei, LI Zhenming, LIU Mingyang, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. | |
| [23] | SHARMA Atul, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
| [24] | SUN Mingyang, LIU Tong, SHA Haonan, et al. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications[J]. Journal of Energy Storage, 2023, 68: 107713. |
| [25] | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
| ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
| [26] | LIU Lu, ZHANG Yuang, ZHANG Shufen, et al. Advanced phase change materials from natural perspectives: Structural design and functional applications[J]. Advanced Science, 2023, 10(22): 2207652. |
| [27] | UMAIR Malik Muhammad, ZHANG Yuang, IQBAL Kashif, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review[J]. Applied Energy, 2019, 235: 846-873. |
| [28] | PASARKAR Neeraj P, YADAV Mukesh, MAHANWAR Prakash A. A review on the micro-encapsulation of phase change materials: Classification, study of synthesis technique and their applications[J]. Journal of Polymer Research, 2022, 30(1): 13. |
| [29] | XU Yue, FLEISCHER Amy S, FENG Gang. Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel[J]. Carbon, 2017, 114: 334-346. |
| [30] | WANG Weilong, YANG Xiaoxi, FANG Yutang, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage[J]. Applied Energy, 2009, 86(9): 1479-1483. |
| [31] | ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385-389. |
| [32] | SHAHID Usman BIN, ABDALA Ahmed. A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs Boron Nitride[J]. Energy Storage Materials, 2021, 34: 365-387. |
| [33] | MARSKE Felix, DASLER Joe, HAUPT Caroline, et al. Influence of surfactants and organic polymers on monolithic shape-stabilized phase change materials synthesized via Sol-gel route[J]. Journal of Energy Storage, 2022, 49: 104127. |
| [34] | Gökhan HEKIMOĞLU, SARI Ahmet, Önal YUNUS, et al. Utilization of waste apricot kernel shell derived-activated carbon as carrier framework for effective shape-stabilization and thermal conductivity enhancement of organic phase change materials used for thermal energy storage[J]. Powder Technology, 2022, 401: 117291. |
| [35] | 高迪, 王树刚, 才晓旭, 等. 相变微胶囊的制备及其在微通道的应用进展[J]. 化工进展, 2021, 40(9): 5180-5194. |
| GAO Di, WANG Shugang, CAI Xiaoxu, et al. Preparation of microencapsulated phase change material and its application in microchannels: A review[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5180-5194. | |
| [36] | GHOSH Swapan Kumar. Functional Coatings and Microencapsulation: A General Perspective [M]. Functional Coatings. 2006: 1-28. |
| [37] | GHUFRAN Muhammad, HUITINK David. Synthesis of nano-size paraffin/silica-based encapsulated phase change materials of high encapsulation ratio via Sol-gel method[J]. Journal of Materials Science, 2023, 58(18): 7673-7689. |
| [38] | 张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130. |
| ZHANG Qi, LIU Chongyang, SONG Jun, et al. Progress in synthesis and application of microcapsule phase-change materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. | |
| [39] | JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. |
| [40] | 朱建平, 侯欢欢, 田梦迪, 等. 相变微胶囊制备方法研究进展[J]. 化工新型材料, 2016, 44(8): 1-3. |
| ZHU Jianping, HOU Huanhuan, TIAN Mengdi, et al. Research progress on the preparation of phase change material microcapsule[J]. New Chemical Materials, 2016, 44(8): 1-3. | |
| [41] | 王嘉炜, 王迎国. 微胶囊的制备方法研究进展[J]. 纳米技术, 2022, 12(2): 19-25. |
| WANG Jiawei, WANG Yingguo, Progress in preparation methods of microcapsules[J]. Hans Journal of Nanotechnology, 2022, 12(2): 19-25. | |
| [42] | ARSHAD Adeel, JABBAL Mark, YAN Yuying, et al. The micro-/ nano-PCMs for thermal energy storage systems: A state of art review[J]. International Journal of Energy Research, 2019, 43(11): 5572-5620. |
| [43] | ASSADPOUR Elham, JAFARI Seid Mahdi. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules[J]. Annual Review of Food Science and Technology, 2019, 10: 103-131. |
| [44] | METHAAPANON Rungthiwa, KORNBONGKOTMAS Saran, ATABOONWONGSE Chutiwat, et al. Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process[J]. Powder Technology, 2020, 361: 910-916. |
| [45] | MUSTAPHA Abdullah Naseer, ZHANG Yan, ZHANG Zhibing, et al. A systematic study on the reaction mechanisms for the microencapsulation of a volatile phase change material (PCM) via one-step in situ polymerisation[J]. Chemical Engineering Science, 2022, 252: 117497. |
| [46] | SHI Jian, WU Xiaolin, SUN Rong, et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage[J]. Materials Chemistry and Physics, 2019, 231: 244-251. |
| [47] | YAN Jiahui, RUAN Li, HU Dechao, et al. Microencapsulation of phase change materials with a soy oil-based polyurethane shell via Pickering emulsion polymerization[J]. ACS Applied Energy Materials, 2023, 6(12): 6814-6825. |
| [48] | CHAKRABARTY Arindam, TERAMOTO Yoshikuni. Scalable Pickering stabilization to design cellulose nanofiber-wrapped block copolymer microspheres for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4623-4632. |
| [49] | ZHANG Zhe, ZHANG Zhen, CHANG Tian, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. |
| [50] | TIAN Yuti, LIU Yong, ZHANG Li, et al. Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124216. |
| [51] | PETHURAJAN Vignesh, SURESH Sivan, MOJIRI Ahmad, et al. Microencapsulation of nitrate salt for solar thermal energy storage-synthesis, characterisation and heat transfer study[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110308. |
| [52] | ALEHOSSEINI Elham, JAFARI Seid Mahdi. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management[J]. Advances in Colloid and Interface Science, 2020, 283: 102226. |
| [53] | 黄志国, 孙志高. 蓄热用纳米相变微胶囊制备与性能[J]. 化工进展, 2023, 42(11): 5842-5851. |
| HUANG Zhiguo, SUN Zhigao. Preparation and properties of nano phase change microcapsules for heat storage[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5842-5851. | |
| [54] | MOGHADDAM Meghdad Kamali, MORTAZAVI Sayed Majid, KHAYMIAN Taghi. Micro/nano-encapsulation of a phase change material by coaxial electrospray method[J]. Iranian Polymer Journal, 2015, 24(9): 759-774. |
| [55] | KONUKLU Yeliz, OSTRY Milan, PAKSOY Halime O, et al. Review on using microencapsulated phase change materials (PCM) in building applications[J]. Energy and Buildings, 2015, 106: 134-155. |
| [56] | ERREBAI Farid Boudali, CHIKH Salah, DERRADJI Lotfi, et al. Optimum mass percentage of microencapsulated PCM mixed with gypsum for improved latent heat storage[J]. Journal of Energy Storage, 2021, 33: 101910. |
| [57] | FIGUEIREDO António, LAPA José, VICENTE Romeu, et al. Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs[J]. Construction and Building Materials, 2016, 112: 639-647. |
| [58] | LIU K, YUAN Z F, ZHAO H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review[J]. Materials Today Sustainability, 2023, 21: 100336. |
| [59] | ZHANG Shuai, FENG Daili, SHI Lei, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
| [60] | DU Peixing, WANG Meng, ZHONG Xiaochen, et al. Anisotropic porous skeleton for efficient thermal energy storage and enhanced heat transfer: Experiments and numerical models[J]. Journal of Energy Storage, 2022, 56: 106021. |
| [61] | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
| WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
| [62] | Trung Huu BUI, NGUYEN Giang Tien. Enhanced thermal energy storage of n-octadecane-impregnated mesoporous silica as a novel shape-stabilized phase change material[J]. ACS Omega, 2022, 7(14): 12222-12230. |
| [63] | YUN Beom Yeol, CHOI Ji Yong, KIM Young Uk, et al. Evaluation of shape-stabilized phase-change materials using calcium carbonate-based starfish microporous materials for thermal energy storage[J]. Applied Thermal Engineering, 2024, 241: 122267. |
| [64] | KUMAR Prabhat, THOMAS Shijo, SOBHAN C B, et al. Activated carbon foam composite derived from PEG400/Terminalia Catappa as form stable PCM for sub-zero cold energy storage[J]. Journal of Cleaner Production, 2024, 434: 139993. |
| [65] | ZHANG Haiquan, LIU Zijing, Junping MAI, et al. Super-elastic smart phase change material (SPCM) for thermal energy storage[J]. Chemical Engineering Journal, 2021, 411: 128482. |
| [66] | LI Wei, GAO Chongjie, HOU Aolin, et al. One-pot in situ synthesis of expandable graphite-encapsulated paraffin composites for thermal energy storage[J]. Chemical Engineering Journal, 2024, 481: 148541. |
| [67] | HUANG Zhupin, WANG Changhong, ZHOU Li, et al. Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton[J]. Surfaces and Interfaces, 2021, 26: 101338. |
| [68] | ZHANG Jingfan, ZHU Tao, LAN Fujie, et al. Constructing a novel porous skeleton based on polycarbonate/expandable graphite for phase change materials with improved flame retardancy and shape stability[J]. Journal of Energy Storage, 2024, 81: 110334. |
| [69] | ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632. |
| [70] | CHEN Kang, GUO Liejin, WANG Hui. A review on thermal application of metal foam[J]. Science China Technological Sciences, 2020, 63(12): 2469-2490. |
| [71] | HU Lei, ZHANG Li, CUI Wei, et al. Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications[J]. Journal of Materials Science & Technology, 2025, 210: 204-226. |
| [72] | WU Songze, ZHOU Yang, GAO Wen, et al. Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. |
| [73] | BIDIYASAR Rahul, KUMAR Rohitash, JAKHAR Narendra. A critical review of polymer support-based shape-stabilized phase change materials for thermal energy storage applications[J]. Energy Storage, 2024, 6(4): e639. |
| [74] | YAO Yuan, ZHANG Xiaohong, GUO Zhaoyan, et al. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers[J]. Chemical Engineering Journal, 2023, 455: 140363. |
| [75] | LIU Zhenjie, CHEN Dong, ZHANG Jinfang, et al. Self-stabilized precipitation polymerization and its application[J]. Research, 2018, 2018: 9370490. |
| [76] | GUO Zhaoyan, RU Yue, SONG Wenbo, et al. Water-soluble polymers with strong photoluminescence through an eco-friendly and low-cost route[J]. Macromolecular Rapid Communications, 2017, 38(14): 1700099. |
| [77] | HU Chenxi, GUO Zhaoyan, RU Yue, et al. A new family of photoluminescent polymers with dual chromophores[J]. Macromolecular Rapid Communications, 2018, 39(10): 1800035. |
| [78] | 胡晨曦, 张晓红, 乔金樑. 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用[J]. 高分子学报, 2021, 52(3): 281-286. |
| HU Chenxi, ZHANG Xiaohong, QIAO Jinliang. Non-conjugated AIE polymers prepared by hydrothermal reaction and its application in Fe3+ detection[J]. Acta Polymerica Sinica, 2021, 52(3): 281-286. | |
| [79] | 郭照琰, 高易, 茹越, 等. 马来酰胺酸-醋酸乙烯酯交替共聚物的光致发光性能及荧光水凝胶的制备[J]. 高分子学报, 2024, 55(9): 1155-1164. |
| GUO Zhaoyan, GAO Yi, RU Yue, et al. The Photoluminescent Properties of Poly(maleamic acid-alt-vinyl acetate) and Construction of Fluorescent Hydrogel[J]. Acta Polymerica Sinica, 2024, 55(9): 1155-1164. | |
| [80] | 郭照琰, 茹越, 胡晨曦, 等. 马来酸酐/马来酰亚胺共聚物及衍生物的光致发光研究进展[J]. 高分子学报, 2024, 55(10): 1265-1279. |
| GUO Zhaoyan, RU Yue, HU Chenxi, et al. Research progress on photoluminescence of maleic anhydride/maleimide copolymers and derivatives[J]. Acta Polymerica Sinica, 2024, 55(10): 1265-1279. | |
| [81] | 雷晖, 陈志军, 王学子, 等. 影响多孔定型相变储能材料性能的因素分析[J]. 上海第二工业大学学报, 2024, 41(2): 119-127. |
| LEI Hui, CHEN Zhijun, WANG Xuezi, et al. Analysis of factors affecting the performance of porous shaped phase change energy storage materials[J]. Journal of Shanghai Polytechnic University, 2024, 41(2): 119-127. | |
| [82] | ZHANG Dexin, ZHU Chuanyong, HUANG Binghuan, et al. Thermal behaviors and performance of phase change materials embedded in sparse porous skeleton structure for thermal energy storage[J]. Journal of Energy Storage, 2023, 62: 106849. |
| [83] | YANG Kai, VENKATARAMAN Mohanapriya, ZHANG Xiuling, et al. Incorporation of organic PCMs into textiles[J]. Journal of Materials Science, 2022, 57(2): 798-847. |
| [84] | 陆源, 郇昌梦, 齐帅, 等. 静电纺丝用于制备有机相变储热纤维的研究进展[J]. 新能源进展, 2018, 6(5): 439-447. |
| LU Yuan, HUAN Changmeng, QI Shuai, et al. Review on organic phase change materials based fibers for thermal energy storage via electrospinning technique[J]. Advances in New and Renewable Energy, 2018, 6(5): 439-447. | |
| [85] | Andrés SUÁREZ-GARCÍA, ARCE Elena, ALFORD Laura, et al. Electrospun composite fibers containing organic phase change materials for thermo-regulation: Trends[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113648. |
| [86] | PATEL Dev, WEI Wanying, SINGH Harmann, et al. Efficient and secure encapsulation of a natural phase change material in nanofibers using coaxial electrospinning for sustainable thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11570-11579. |
| [87] | JIA Yifan, LIAO Guoxing, WU Yang, et al. Investigating the effect of crystallizability and glass transition temperature of supporting materials for preparing high enthalpy electrospun poly(lactic acid)/poly(ethylene glycol) phase change fibers[J]. Solar Energy Materials and Solar Cells, 2023, 256: 112322. |
| [88] | ZHI Maoyong, YUE Shan, ZHENG Lingling, et al. Recent developments in solid-solid phase change materials for thermal energy storage applications[J]. Journal of Energy Storage, 2024, 89: 111570. |
| [89] | WANG Chenyang, GENG Xin, CHEN Jing, et al. Multiple H-bonding cross-linked supramolecular solid-solid phase change materials for thermal energy storage and management[J]. Advanced Materials, 2024, 36(11): 2309723. |
| [90] | LI Shengwei, HE Lunhua, LU Huaile, et al. Ultrahigh-performance solid-solid phase change material for efficient, high-temperature thermal energy storage[J]. Acta Materialia, 2023, 249: 118852. |
| [91] | ZHANG Huan, XU Changlu, FANG Guiyin. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111747. |
| [92] | SHARAR Darin J, LEFF Asher C, WILSON Adam A, et al. High-capacity high-power thermal energy storage using solid-solid martensitic transformations[J]. Applied Thermal Engineering, 2021, 187: 116490. |
| [1] | FENG Sanzhe, KUANG Tangqing, LIU Hesheng, YANG Fan, CHEN Hao. Effect of projectile diameter on the quality of water projectile assisted co-injection molding fittings of short glass fiber reinforced polypropylene [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4061-4069. |
| [2] | LIU Wenlong, MA Xiuqing, LI Changjin, HE Dongyang, GAO Jixing, ZHANG Yang, LI Manyi, YANG Weimin, LI Haoyi. LDPE/ PEW melt-blown microfiber and its nonwovens performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4032-4038. |
| [3] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [4] | WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523. |
| [5] | WANG Linyan, ZHOU Pingde, ZHANG Yiduo, LIU Yuxi, HAO Mingzheng, LIANG Yurong. Preparation and performance of high thermal conductivity boron nitride/natural rubber nanocomposites [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3541-3549. |
| [6] | LI Peiyi, SUN Bolong, LIU Ruiyan, ZHOU Xinyao, LIU Ruilin, HU Yuanyuan, XU Gongtao, LI Xinping. Preparation of sodium alginate/titanium dioxide composite porous material and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3053-3061. |
| [7] | ZHANG Shuxi, CHEN Peiting, PU Jianbo, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Effect of air inlet on secondary particle size and electrochemical properties of silicon/carbon anode materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2196-2201. |
| [8] | AN Mingze, ZHANG Bingbing, WANG Sheng, CHEN Weijie, LIU Shiwang, XUE Bin, XU Guomin, QIN Shuhao. Research progress on carbon-based stereotyped composite phase change materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2102-2118. |
| [9] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| [10] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [11] | ZHAO Ke, ZHANG Heng, ZHAI Qian, ZHEN Qi, SU Tianyang, CUI Jingqiang. Designing of composite structure and liquid transmission behavior of the polylactic acid/polyethylene glycol @ sodium dodecyl sulfate microfibrous water evaporator [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1014-1024. |
| [12] | YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866. |
| [13] | QIN Biming, NIE Xinyao, LIU Yang, WANG Zihan, XIA Liangzhi. Microencapsulation technology based on Pickering emulsion-spray drying method [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5609-5618. |
| [14] | GAO Yongping, KANG Jianing, LIU Bai, YUAN Shiqi, YU Zeguang, ZHANG Zhihui, GAO Wenxiu. Catalytic hydrogenation of nitrobenzene to aniline over heterogeneous catalyst PCuMo11/MG-800 [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5764-5770. |
| [15] | WEN Jing, ZHANG Hongying, ZHANG Yingdong, XU Runze. Development and performance characterization of architectural energy storage materials with lauric acid-paraffin binary eutectic and nanosized SiO2 aerogel [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 388-397. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |