Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (10): 3530-3539.DOI: 10.16085/j.issn.1000-6613.2015.10.003
Previous Articles Next Articles
ZHOU Ying, CHEN Liyu, LI Yingwei
Received:
2015-04-09
Revised:
2015-05-26
Online:
2015-10-05
Published:
2015-10-05
周颖, 陈立宇, 李映伟
通讯作者:
李映伟,教授,博士生导师,主要从事金属有机骨架基材料的催化应用基础研究。E-mailliyw@scut.edu.cn。
作者简介:
周颖(1991—),女,硕士研究生。
CLC Number:
ZHOU Ying, CHEN Liyu, LI Yingwei. Nanomaterials as heterogeneous catalysts for room-temperature catalytic transformations[J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3530-3539.
周颖, 陈立宇, 李映伟. 纳米多相催化材料在常温反应中的应用[J]. 化工进展, 2015, 34(10): 3530-3539.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2015.10.003
[1] Vivek P,Rafael L,et al. Megnetically recoverable nanocatalysts[J]. Chemical Reviews,2011,111(5):3036-3075.[2] Schlogl R,Abd Hamid S B,Sharifah B. Nanocatalysis:Mature science revisited or something really new?[J]. Angewandte Chemie International Edition,2004,43(13):1628-1637.[3] Pagliaro M,Pandarus V,Ciriminna R,et al. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions[J]. ChemCatChem.,2012,4(4):432-445.[4] Philippe Serp,Karine Philippot. Nanomaterials in Catalysis[M]. Weinheim,Germany:Wiley-VCH,2012:1-54.[5] Lam F L Y,Li M C L,Chau R S L,et al. Catalysis at room temperature:Perspectives for future green chemical processes[J]. WIREs Energy Environ.,2015,4(4):316-338.[6] Zhu X,Hoang T,Lobban L,et al. Low CO content hydrogen production from bio-ethanol using a combined plasma reforming-catalytic water gas shift reactor[J]. Applied Catalysis,B:Environmental,2010,94(3-4):311-317.[7] 韩丹,张爱文,高官俊,等. 负载型纳米Au催化剂光催化性能的研究进展[J]. 化工进展,2012,31(2):435-440.[8] White R J,Luque R,Budarin V L. Supported metal nanoparticles on porous materials. Methods and applications[J]. Chemical Society Reviews,2009,38(2):481-494.[9] Wu B,Zheng N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today,2013,8(2):168-197.[10] Hu J,Chen Z,Li M,et al. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J]. ACS Applied Materials& Interfaces,2014,6(15):13191-13200.[11] Yasukawa T,Miyamura H,Kobayashi S. Chiral metal nanoparticle-catalyzed asymmetric C—C bond formation reactions[J]. Chemical Society Reviews,2014,43(5):1450-1461.[12] Sawai K,Tatumi R,Nakahodo T,et al. Asymmetric Suzuki-Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature[J]. Angewandte Chemie,International Edition,2008,47(36):6917-6919.[13] Wigley T M L,Richels R,Edmonds J A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations[J]. Nature,1996,379(6562):240-243.[14] Furukawa H,Cordova K E,O'Keeffe M,et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444.[15] Férey G,Mellot-Draznieks C,Serre C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.[16] Yuan B,Pan Y,Li Y,et al. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media[J]. Angewandte Chemie,International Edition,2010,49(24):4054-4058.[17] Liu H,Chen G,Jiang H,et al. From alkyl aromatics to aromatic esters:Efficient and selective C-H activation promoted by a bimetallic heterogeneous catalyst[J]. ChemSusChem,2012,5(10):1892-1896.[18] Balu A M,Lin C S K,Liu H,et al. Iron oxide functionalized MIL-101 materials in aqueous phase selective oxidations[J]. Applied Catalysis,A:General,2013,455:261-266.[19] Liu H,Li Y,Jiang H. Significant promoting effects of Lewis acidity on Au-Pd systems in the selective oxidation of aromatic hydrocarbons[J]. Chemical Communications,2012,48(67):8431-8433.[20] Hwang Y K,Hong D Y,Chang J S,et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J]. Angewandte Chemie,International Edition,2008,47(22):4144-4148.[21] Pan Y,Yuan B,Li Y,et al. Multifunctional catalysis by Pd@MIL-101:One-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework[J]. Chemical Communications,2010,46:2280-2282.[22] Liu H,Liu Y,Li Y,et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. Journal of Physical Chemistry C,2010,114(31):13362-13369.[23] Liu H,Li Y,Luque R,et al. A Tuneable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols[J]. Advanced Synthesis & Catalysis,2011,353(17):3107-3113.[24] Chen L,Chen H,Luque R,et al. Metal-organic framework encapsulated Pd nanoparticles:Towards advanced heterogeneous catalysts.[J]. Chemical Science,2014,5(10):3708-3714.[25] Proch S,Herrmannsdörfer J,Kempe R,et al. Pt@MOF-177:Synthesis,room-temperature hydrogen storage and oxidation catalysis quick view other sources[J]. Chemistry:A European Journal,2008,14(27):8204-8212.[26] Chen L,Chen H,Li Y. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J]. Chemical Communications,2014,50(94):14752-14755.[27] Su D S,Perathoner S,Centi G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews,2013,113(8):5782-5716.[28] Yang Y,Chiang K,Burke N. Porous carbon-supported catalysts for energy and environmental applications:A short review[J]. Catalysis Today,2011,178(1):197-205.[29] Zhu Q-L,Tsumori N,Xu Q. Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions[J]. Chemical Science,2014,5(1):195-199.[30] Zhong W,Liu H,Bai C,et al. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-Based catalysts[J]. ACS Catalysis,2015,5:1850-1856.[31] Mahyari M,Shaabani A. Nickel nanoparticles immobilized on three-dimensional nitrogen-doped graphene as a superb catalyst for the generation of hydrogen from the hydrolysis of ammonia borane[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability,2014,2(39):16652-16659.[32] John J,Gravel E,Hagège A,et al. Catalytic oxidation of silanes by carbon nanotube-gold nanohybrids[J]. Angewandte Chemie International Edition,2011,50(33):7533-7536.[33] 黄超,杨惠,杨旭,等. 介孔氧化硅负载贵金属催化剂研究进展[J]. 化工进展,2014,33,6:1459-1464.[34] Ojeda M,Pineda A,Romero A A,et al. Mechanochemical synthesis of maghemite/silica nanocomposites:Advanced materials for aqueous room-temperature catalysis[J]. ChemSusChem,2014,7(7):1876-1880.[35] Karimia B,Esfahani F K. Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols[J]. Advanced Synthesis & Catalysis,2012,354(7):1319-1326.[36] Zhang S,Gai S,He F,et al. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction[J]. Nanoscale,2014,6(19):11181-11188.[37] Ma C Y,Mu Z,Li J J,et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene[J]. Journal of the American Chemical Society,2010,132(8):2608-2613.[38] Shekhar M,Wang J,Lee W-S,et al. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2[J]. Journal of the American Chemical Society,2012,134(10):4700-4708.[39] Liu J,Zou S,Li S,et al. A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol-gel process[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability,2013,1(12):4038-4047.[40] Layek K,Kantam M L,Shirai M,et al. Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature[J]. Green Chemistry,2012,14(11):3164-3174.[41] 王喜兵,纪拓,李力成,等. Au/TiO2-B 催化剂的 CO 低温氧化性能[J]. 化工学报,2014,65(5):1636-1643.[42] Chen B-B,Shi C,Crocker M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Applied Catalysis,B:Environmental,2013,132-133:245-255.[43] 笪国进,欧阳李科,徐晶,等. 吡啶改性Pd/SiO2催化剂用于H2和O2直接合成H2O2[J]. 化工学报,2013,64(2):561-567.[44] Bronstein L M,Shifrina Z B. Dendrimers as encapsulating,stabilizing,or directing agents for inorganic nanoparticles[J]. Chemical Reviews,2011,111(9):5301-5344.[45] Dhital R N,Kamonsatikul C,Somsook E,et al. Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters:An application to Ullmann coupling[J]. Journal of the American Chemical Society,2012,134(50):20250-20253.[46] Miyamura H,Matsubara R,Miyazaki Y,et al. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives[J]. Angewandte Chemie,International Edition,2007,46(22):4151-4154.[47] Genna D T,Wong-Foy A G,Matzger A J,et al. Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange[J]. Journal of the American Chemical Society,2013,135(29):10586-10589.[48] Chen L,Rangan S,Li J,et al. A molecular Pd(II)complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C—Cl bond activation[J]. Green Chemistry,2014,16(8):3978-3985.[49] Polshettiwar V,Baruwati B,Varma R S. Nanoparticle-supported and magnetically recoverable nickel catalyst:A robust and economic hydrogenation and transfer hydrogenation protocol[J]. Green Chemistry,2009,11(1):127-131.[50] Kong G-Q,Ou S,Zou C,et al. Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis[J]. Journal of the American Chemical Society,2012,134(48):19851-19857.[51] Fernández-García M,Martínez-Arias A,Hanson J C,et al. Nanostructured oxides in chemistry:Characterization and properties[J]. Chemical Reviews,2004,104(9):4063-4104.[52] Knözinger H. Perspective:Surface science:Catalysis on oxide surfaces[J]. Science,2000,287(5457):1407,1409.[53] 范立群,隋吴彬. 金属氧化物纳米复合催化剂的研究进展[J]. 化工进展,2013,32(8):1832-1861.[54] Li Y,Ji H,Chen C,et al. Concerted two-electron transfer and high selectivity of TiO2 in photocatalyzed deoxygenation of epoxides[J]. Angewandte Chemie,International Edition,2013,52(48):12636-12640.[55] Shiraishi Y,Hirakawa H,TogawaY,et al. Noble-metal-free deoxygenation of epoxides:Titanium dioxide as a photocatalytically regenerable electron-transfer catalyst[J]. ACS Catalysis,2014,4(6):1642-1649.[56] Xie X,Li Y,Liu Z Q,et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature,2009,458(7239):746-749.[57] Cañeque T,Truscott F M,Rodriguez R,et al. Electrophilic activation of allenenes and allenynes:Analogies and differences between Bronsted and Lewis acid activation[J]. Chemical Society Reviews,2014,43(9):2916-2926.[58] Busca G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chemical Reviews,2007,107(11):5366-5410.[59] Toshio Okuhara. Water-tolerant solid acid catalysts[J]. Chemical Reviews,2002,102(10):3641-3665.[60] Climent M J,Corma A,Iborra S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals[J]. Chemical Reviews,2011,111(2):1072-1133.[61] Liu F,Sun J,Zhu L,et al. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions[J]. Journal of Materials Chemistry,2012,22(12):5495-5502.[62] Horike S,Dincǎ M,Tamaki K,et al. Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. Journal of the American Chemical Society,2008,130(18):5854-5855. |
[1] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[2] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[3] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[6] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[7] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[8] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[9] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[10] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[11] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[12] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[13] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[14] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[15] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |