Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5703-5716.DOI: 10.16085/j.issn.1000-6613.2024-1455
• Energy processes and technology • Previous Articles
ZHANG Shanchao1(
), ZHANG Deliang2, WANG Lu2, LIANG Hao1, YANG Qian1, YANG Guanjie1, SU Wei1, MA Xiaoxun1, ZHU Yanyan1(
)
Received:2024-09-05
Revised:2024-12-26
Online:2025-11-10
Published:2025-10-25
Contact:
ZHU Yanyan
张善超1(
), 张德亮2, 王露2, 梁豪1, 杨倩1, 杨冠杰1, 苏伟1, 马晓迅1, 朱燕燕1(
)
通讯作者:
朱燕燕
作者简介:张善超(2001—),男,硕士研究生,研究方向为能源化工。E-mail:19861215961@163.com。
基金资助:CLC Number:
ZHANG Shanchao, ZHANG Deliang, WANG Lu, LIANG Hao, YANG Qian, YANG Guanjie, SU Wei, MA Xiaoxun, ZHU Yanyan. Thermodynamic analysis and experimental study on the iron-based perovskite oxygen carrier for syngas production via chemical looping[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5703-5716.
张善超, 张德亮, 王露, 梁豪, 杨倩, 杨冠杰, 苏伟, 马晓迅, 朱燕燕. 铁基钙钛矿载氧体化学链制合成气热力学性能分析与实验[J]. 化工进展, 2025, 44(10): 5703-5716.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1455
| 项目 | 物相组成 |
|---|---|
| 气相 | CH4(g),CO(g),CO2(g),H2(g),H2O(g),O2(g),CH3(g) |
| 固相 | C,Fe,Fe0.947O,FeO,Fe2O3,Fe3O4,La,La2O3,LaFe12O19,La3Fe5O12,Mn,MnO,MnO2,Mn2O3,Mn3O4,Pr,PrO1.833,PrO2,Pr2O3,Pr6O11,Pr12O22,Pr3Fe5O12,PrFeO3,Sm,SmFeO3,Sm2O3,Sm3Fe5O12,Sn,SnO,SnO2,Y,YFeO3,Y2O3,Zr,ZrO2,LaFe0.93Mn0.07O3, LaFe0.93Sn0.07O3,LaFe0.93Zr0.07O3 |
| 项目 | 物相组成 |
|---|---|
| 气相 | CH4(g),CO(g),CO2(g),H2(g),H2O(g),O2(g),CH3(g) |
| 固相 | C,Fe,Fe0.947O,FeO,Fe2O3,Fe3O4,La,La2O3,LaFe12O19,La3Fe5O12,Mn,MnO,MnO2,Mn2O3,Mn3O4,Pr,PrO1.833,PrO2,Pr2O3,Pr6O11,Pr12O22,Pr3Fe5O12,PrFeO3,Sm,SmFeO3,Sm2O3,Sm3Fe5O12,Sn,SnO,SnO2,Y,YFeO3,Y2O3,Zr,ZrO2,LaFe0.93Mn0.07O3, LaFe0.93Sn0.07O3,LaFe0.93Zr0.07O3 |
| 样品 | 晶相组成 | 晶胞参数a/nm | 晶粒尺寸/nm |
|---|---|---|---|
| LaFeO3 | LaFeO3 | 3.9287 | 96 |
| LaFe0.93Zr0.07O3 | LaFeO3 | 3.9410 | 35 |
| 样品 | 晶相组成 | 晶胞参数a/nm | 晶粒尺寸/nm |
|---|---|---|---|
| LaFeO3 | LaFeO3 | 3.9287 | 96 |
| LaFe0.93Zr0.07O3 | LaFeO3 | 3.9410 | 35 |
| 载氧体 | 铁价态质量分数/% | Fe2+/Fe3+ | 氧物种质量分数/% | Oads/Olatt | |||
|---|---|---|---|---|---|---|---|
| Fe2+ | Fe3+ | OⅠ | OⅡ | OⅢ | |||
| LaFeO3 | 0 | 100 | 0 | 15.16 | 38.06 | 46.79 | 1.13 |
| LaFe0.93Zr0.07O3 | 36.69 | 63.31 | 0.560 | 10.28 | 49.56 | 40.16 | 1.49 |
| 载氧体 | 铁价态质量分数/% | Fe2+/Fe3+ | 氧物种质量分数/% | Oads/Olatt | |||
|---|---|---|---|---|---|---|---|
| Fe2+ | Fe3+ | OⅠ | OⅡ | OⅢ | |||
| LaFeO3 | 0 | 100 | 0 | 15.16 | 38.06 | 46.79 | 1.13 |
| LaFe0.93Zr0.07O3 | 36.69 | 63.31 | 0.560 | 10.28 | 49.56 | 40.16 | 1.49 |
| 样品 | 晶相组成 | 晶粒尺寸①/nm |
|---|---|---|
| LaFeO3 | LaFeO3 | 96 |
| LaFe0.93Zr0.07O3 | LaFeO3 | 35 |
| LaFeO3-10次循环 | LaFeO3 | 358 |
| LaFe0.93Zr0.07O3-10次循环 | LaFeO3 | 93 |
| LaFeO3-30次循环 | LaFeO3 | 502 |
| LaFe0.93Zr0.07O3-30次循环 | LaFeO3 | 135 |
| 样品 | 晶相组成 | 晶粒尺寸①/nm |
|---|---|---|
| LaFeO3 | LaFeO3 | 96 |
| LaFe0.93Zr0.07O3 | LaFeO3 | 35 |
| LaFeO3-10次循环 | LaFeO3 | 358 |
| LaFe0.93Zr0.07O3-10次循环 | LaFeO3 | 93 |
| LaFeO3-30次循环 | LaFeO3 | 502 |
| LaFe0.93Zr0.07O3-30次循环 | LaFeO3 | 135 |
| [1] | HUANG Chuande, WU Jian, CHEN Youtao, et al. In situ encapsulation of iron(0) for solar thermochemical syngas production over iron-based perovskite material[J]. Communications Chemistry, 2018, 1: 55. |
| [2] | LI Xinyu, LI Di, TIAN Hao, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 202: 683-694. |
| [3] | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
| [4] | YIN Xianglei, ZHANG Runsen, ZHANG Yulong, et al. Enhanced reactivity of methane partial oxidation of nickel doped LaMnO3+ δ perovskites for chemical looping process[J]. International Journal of Hydrogen Energy, 2024, 71: 481-492. |
| [5] | TSURU Toshinori, YAMAGUCHI Koji, YOSHIOKA Tomohisa, et al. Methane steam reforming by microporous catalytic membrane reactors[J]. AIChE Journal, 2004, 50(11): 2794-2805. |
| [6] | MURMURA M A, CERBELLI S, ANNESINI M C. Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study[J]. Chemical Engineering Science, 2017, 162: 88-103. |
| [7] | JI Jinqing, SHEN Laihong. Enhanced co-production of high-quality syngas and highly-concentrated hydrogen via chemical looping steam methane reforming over Ni-substituted La0.6Ce0.4MnO3 oxygen carriers[J]. Fuel, 2024, 368: 131588. |
| [8] | DAI Xiaoping, CHENG Jie, LI Zhanzhao, et al. Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming[J]. Chemical Engineering Science, 2016, 153: 236-245. |
| [9] | Axel LÖFBERG, KANE Tanushree, Jesús GUERRERO-CABALLERO, et al. Chemical looping dry reforming of methane: Toward shale-gas and biogas valorization[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 523-529. |
| [10] | HUANG Linan, LI Danyang, TIAN Dong, et al. Optimization of Ni-based catalysts for dry reforming of methane via alloy design: A review[J]. Energy & Fuels, 2022, 36(10): 5102-5151. |
| [11] | Miryam GIL-CALVO, Cristina JIMÉNEZ-GONZÁLEZ, DE RIVAS Beatriz, et al. Novel nickel aluminate-derived catalysts supported on ceria and ceria-zirconia for partial oxidation of methane[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6186-6197. |
| [12] | LI Yunhua, WANG Yaquan, HONG Xuebin, et al. Partial oxidation of methane to syngas over nickel monolithic catalysts[J]. AIChE Journal, 2006, 52(12): 4276-4279. |
| [13] | Axel LÖFBERG, Jesús GUERRERO-CABALLERO, KANE Tanushree, et al. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Applied Catalysis B: Environmental, 2017, 212: 159-174. |
| [14] | HUANG Zhen, JIANG Huanqi, HE Fang, et al. Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe-Ni bimetallic oxides[J]. Journal of Energy Chemistry, 2016, 25(1): 62-70. |
| [15] | MORE Amey, Götz VESER. Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes[J]. AIChE Journal, 2017, 63(1): 51-59. |
| [16] | ZUO Huicong, LU Chunqiang, JIANG Lei, et al. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept[J]. Chemical Engineering Journal, 2023, 477: 146870. |
| [17] | ZENG Dewang, QIU Yu, LI Min, et al. Spatially controlled oxygen storage materials improved the syngas selectivity on chemical looping methane conversion[J]. Applied Catalysis B: Environmental, 2021, 281: 119472. |
| [18] | LIU Fang, CHEN Liangyong, NEATHERY James K, et al. Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16341-16348. |
| [19] | 王嘉锐, 刘大伟, 邓耀, 等. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
| WANG Jiarui, LIU Dawei, DENG Yao, et al. Research progress of oxygen carriers in chemical looping reforming reaction of methane[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253. | |
| [20] | ADANEZ Juan, ABAD Alberto, Francisco GARCIA-LABIANO, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
| [21] | 向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332. |
| XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332. | |
| [22] | GAO Yunfei, HAERI Farrah, HE Fang, et al. Alkali metal-promoted La x Sr2– x FeO4– δ redox catalysts for chemical looping oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2018, 8(3): 1757-1766. |
| [23] | CHEN Chi, CIUCCI Francesco. Designing Fe-based oxygen catalysts by density functional theory calculations[J]. Chemistry of Materials, 2016, 28(19): 7058-7065. |
| [24] | FENG Yuan, JIN Hanyu, WANG Shuai. Oxygen migration performance of LaFeO3 perovskite-type oxygen carriers with Sr doping[J]. Physical Chemistry Chemical Physics, 2023, 25(13): 9216-9224. |
| [25] | ZHANG Li, HU Yue, XU Weibin, et al. Anti-coke BaFe1- x Sn x O3- δ oxygen carriers for enhanced syngas production via chemical looping partial oxidation of methane[J]. Energy & Fuels, 2020, 34(6): 6991-6998. |
| [26] | LOMBARDO Gabriele, EBIN Burçak, FOREMAN Mark R St J, et al. Chemical transformations in Li-ion battery electrode materials by carbothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13668-13679. |
| [27] | 韩天佑. 金属卤化物、氧化物与硫化物生成热的一些规则——金属卤化物、氧化物与硫化物生成热的近似计算方法[J]. 化学通报, 1966, 29(3): 60-64. |
| HAN Tianyou. Some rules of heat of formation of metal halides, oxides and sulfides — Approximate calculation method of heat of formation of metal halides, oxides and sulfides[J]. Chemistry, 1966, 29(3): 60-64. | |
| [28] | 王利. LiCoO2在酸性焙烧环境中反应的热力学及影响因素研究[D]. 兰州: 兰州理工大学, 2013. |
| WANG Li. Research on thermodynamics and influencing factors of the reaction of LiCoO2 in the acid roasting conditions[D]. Lanzhou: Lanzhou University of Technology, 2013. | |
| [29] | XIA Xue, CHANG Wenxi, CHENG Shuwen, et al. Oxygen activity tuning via FeO6 octahedral tilting in perovskite ferrites for chemical looping dry reforming of methane[J]. ACS Catalysis, 2022, 12(12): 7326-7335. |
| [30] | GOSAVI Priti V, BINIWALE Rajesh B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization[J]. Materials Chemistry and Physics, 2010, 119(1/2): 324-329. |
| [31] | KIM Jae-Nam, SHIN Kwang-Soo, KIM Dae-Hwan, et al. Changes in chemical behavior of thin film lead zirconate titanate during Ar+-ion bombardment using XPS[J]. Applied Surface Science, 2003, 206(1/2/3/4): 119-128. |
| [32] | THIRUMALAIRAJAN S, GIRIJA K, HEBALKAR Neha Y, et al. Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities[J]. RSC Advances, 2013, 3(20): 7549-7561. |
| [33] | ROBBENNOLT Shauna, FORNELL Jordina, QUINTANA Alberto, et al. Structural and magnetic properties of Fe x Cu1– x sputtered thin films electrochemically treated to create nanoporosity for high-surface-area magnetic components[J]. ACS Applied Nano Materials, 2018, 1(4): 1675-1682. |
| [34] | HOLGADO J P, MUNUERA G, ESPINÓS J P, et al. XPS study of oxidation processes of CeO x defective layers[J]. Applied Surface Science, 2000, 158(1/2): 164-171. |
| [35] | ZHENG Yane, LI Kongzhai, WANG Hua, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Applied Catalysis B: Environmental, 2017, 202: 51-63. |
| [36] | LI Ranjia, YU Changchun, SHEN Shikong. Partial oxidation of methane to syngas using lattice oxygen of La1- x Sr x FeO3 perovskite oxide catalysts instead of molecular oxygen[J]. Journal of Natural Gas Chemistry, 2002, 11(3/4): 137-144. |
| [37] | XIAN Hui, ZHANG Xingwen, LI Xingang, et al. BaFeO3– x perovskite: An efficient NO x absorber with a high sulfur tolerance[J]. The Journal of Physical Chemistry C, 2010, 114(27): 11844-11852. |
| [1] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [2] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [3] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [4] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [5] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [6] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [7] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [8] | XIE Wuqiang, ZHANG Ling, HE Gang, JIANG Lifeng, ZHENG Xirui, ZHANG Hepeng. Electrocatalytic CO2 reduction to methane by CoTBrPP-PTAB-Cu catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3093-3100. |
| [9] | LI Bairu, FANG Zhimin, WANG Aili, LUO Long, ZHANG Luozheng, LI Lvzhou, DING Jianning. Research progress in perovskite solar cells [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2598-2624. |
| [10] | ZHANG Qiang, SUN Nan, ZHENG Junjie, WU Qiang, LIU Chuanhai, LI Yuanji. Effect of mixed thermodynamic promoters on kinetic and recovery study of hydration separation coal mine gas [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 192-201. |
| [11] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
| [12] | ZHANG Yufeng, PANG Yuqian, PEI Haonan, FAN Xiaoqing. Three-way rod metal-organic frameworks for purifying of C2—C3 from natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5185-5192. |
| [13] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
| [14] | LIANG Guowei, JIN Jing, DONG Bo, HOU Fengxiao. Effect of in-situ modification of coal ash on carbon deposition of Ca-based oxygen carrier in chemical looping combustion [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4253-4261. |
| [15] | XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |