1 |
左继浩, 陈嘉慧, 文秀芳, 等. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
|
|
ZUO Jihao, CHEN Jiahui, WEN Xiufang, et al. Advanced materials for separation of oil/water emulsion[J]. Progress in Chemistry, 2019, 31(10): 1440-1458.
|
2 |
CHILVERS B L, MORGAN K J, WHITE B J. Sources and reporting of oil spills and impacts on wildlife 1970—2018[J]. Environmental Science and Pollution Research, 2021, 28(1): 754-762.
|
3 |
辛玥, 宋爽, 张芝蕾, 等. 鳞片状BiVO4不锈钢网涂层的制备及其在油水分离中的应用[J]. 化工进展, 2021, 40(6): 3536-3542.
|
|
XIN Yue, SONG Shuang, ZHANG Zhilei, et al. Preparation of scale-like BiVO4 coated mesh and its application in oil-water separation[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3536-3542.
|
4 |
戴国琛, 张泽天, 高文伟, 等. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(4): 1785-1793.
|
|
DAI Guochen, ZHANG Zetian, GAO Wenwei, et al. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1785-1793.
|
5 |
ZHANG Wanqi, LIU Yiting, TAO Fengbin, et al. An overview of biomass-based oil/water separation materials[J]. Separation and Purification Technology, 2023, 316: 123767.
|
6 |
ZHENG Weiwei, HUANG Jianying, LI Shuhui, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87.
|
7 |
董哲勤, 王宝娟, 许振良, 等. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(1): 1-9.
|
|
DONG Zheqin, WANG Baojuan, XU Zhenliang, et al. Recent progress on fabrication technology of functional membranes for oil/water separation[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 1-9.
|
8 |
BAIG U, FAIZAN M, DASTAGEER M A. Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review[J]. Advances in Colloid and Interface Science, 2021, 297: 102525.
|
9 |
FU Ye, GUO Zhiguang. Natural polysaccharide-based aerogels and their applications in oil-water separations: A review[J]. Journal of Materials Chemistry A, 2022, 10(15): 8129-8158.
|
10 |
PEI Ying, WANG Lu, TANG Keyong, et al. Biopolymer nanoscale assemblies as building blocks for new materials: A review[J]. Advanced Functional Materials, 2021, 31(15): 2008552.
|
11 |
TIAN Na, WU Shaohua, HAN Guangting, et al. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation[J]. Journal of Hazardous Materials, 2022, 424: 127393.
|
12 |
HUANG Lei, LUO Zhixuan, HUANG Xuexia, et al. Applications of biomass-based materials to remove fluoride from wastewater: A review[J]. Chemosphere, 2022, 301: 134679.
|
13 |
WU Ren, BAO Agula. Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance[J]. Journal of CO2 Utilization, 2023, 68: 102377.
|
14 |
Barbara SZCZĘŚNIAK, PHURIRAGPITIKHON Jenjira, CHOMA Jerzy, et al. Recent advances in the development and applications of biomass-derived carbons with uniform porosity[J]. Journal of Materials Chemistry A, 2020, 8(36): 18464-18491.
|
15 |
WEI Gang, ZHANG Jianming, USUELLI Mattia, et al. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis[J]. Progress in Materials Science, 2022, 125: 100915.
|
16 |
YANG Yang, JIANG Xiaofeng, Kheng Lim GOH, et al. The separation of oily water using low-cost natural materials: Review and development[J]. Chemosphere, 2021, 285: 131398.
|
17 |
XIAO Hanzhong, WANG Yujia, HAO Baicun, et al. Collagen fiber-based advanced separation materials: Recent developments and future perspectives[J]. Advanced Materials, 2022, 34(46): e2107891.
|
18 |
SORUSHANOVA Anna, DELGADO Luis M, WU Zhuning, et al. The collagen suprafamily: From biosynthesis to advanced biomaterial development[J]. Advanced Materials, 2019, 31(1): e1801651.
|
19 |
ORGEL Joseph P R O, IRVING Thomas C, MILLER Andrew, et al. Microfibrillar structure of type Ⅰ collagen in situ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9001-9005.
|
20 |
CHEN Guangyan, WANG Yanan, WANG Yujia, et al. Collagen fibers with tuned wetting properties for dual separation of oil-in-water and water-in-oil emulsion[J]. Journal of Materials Chemistry A, 2020, 8(46): 24388-24392.
|
21 |
SHI Jiabo, WANG Chunhua, NGAI To, et al. Diffusion and binding of Laponite clay nanoparticles into collagen fibers for the formation of leather matrix[J]. Langmuir, 2018, 34(25): 7379-7385.
|
22 |
LI Nan, YU Li, XIAO Zhiqun, et al. Biofouling mitigation effect of thin film nanocomposite membranes immobilized with Laponite mediated metal ions[J]. Desalination, 2020, 473: 114162.
|
23 |
SHI Jiabo, ZHANG Ruizhen, MI Zhiyuan, et al. Engineering a sustainable chrome-free leather processing based on novel lightfast wet-white tanning system towards eco-leather manufacture[J]. Journal of Cleaner Production, 2021, 282: 124504.
|
24 |
WU Bo, MU Changdao, ZHANG Guangzhao, et al. Effects of Cr3+ on the structure of collagen fiber[J]. Langmuir, 2009, 25(19): 11905-11910.
|
25 |
LOTSCH Bettina V, OZIN Geoffrey A. All-clay photonic crystals[J]. Journal of the American Chemical Society, 2008, 130(46): 15252-15253.
|
26 |
SHI Jiabo, ZHANG Ruizhen, YANG Na, et al. Hierarchical incorporation of surface-functionalized laponite clay nanoplatelets with type Ⅰ collagen matrix[J]. Biomacromolecules, 2021, 22(2): 504-513.
|