1 |
BANGE Hermann W. Non-CO2 greenhouse gases (N2O, CH4, CO) and the ocean[J]. One Earth, 2022, 5 (12): 1316-1318.
|
2 |
LIU Jingyu, FUJIMORI Shinichiro, TAKAHASGI Kiyoshi, et al. Socioeconomic factors and future challenges of the goal of limiting the increase in global average temperature to 1.5℃[J]. Carbon Management, 2018, 9 (5), 447-457.
|
3 |
MEI Danhua, SUN Minjie, LIU Shiyun, et al. Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: Insight into the active metals of γ-Al2O3 supported catalysts[J]. Journal of CO2 Utilization, 2023, 67, 102307.
|
4 |
高远,窦立广,李江伟,等.低温等离子体-催化剂协同催化CO2转化进展[J].高电压技术,2022, 48(4): 1607-1619.
|
|
GAO Yuan, DU Liguang, LI Jiangwei, et al. Recent advances in catalyzing CO2 conversion by synergistic low-temperature plasma and catalysts [J]. High Voltage Engineering, 2022, 48(4):1607-1619.
|
5 |
YAO S L, OUYANG F, NAKAYAMA, et al. Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma[J]. Energy & Fuels, 2000,14(4):910-914.
|
6 |
CHEN Zhanbin, SUN Huayang, LIU Pengfei, et al. Electron-impact excitation of ions within a quantum plasma[J]. Radiation Physics and Chemistry, 2020, 172: 108756.
|
7 |
WANG Jinxin, ZHANG Kaimin, MEYNEN Vera, et al. Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap: Effects of metal rings on the discharge behavior and performance[J]. Chemical Engineering Journal, 2023, 465: 142953.
|
8 |
ULLAH Sana, GAO Yuan, DOU Liguang, et al. Recent trends in plasma-assisted CO2 methanation: A critical review of recent studies[J]. Plasma Chemistry and Plasma Processing, 2023, 43 (6): 1335-1383.
|
9 |
Paula NAVASCUÉS, COTRINO José, GONZÁLEZ-ELIPE Agustín R, et al. Plasma assisted dry reforming of methane: Syngas and hydrocarbons formation mechanisms[J]. Fuel Processing Technology, 2023, 248: 107827.
|
10 |
LI Di, ROHANI Vandad, PARAKKULAM Ramaswamy Aravind, et al. Orientating the plasma-catalytic conversion of CO2 and CH4 toward liquid products by using a composite catalytic bed[J]. Applied Catalysis A: General, 2023, 650: 119015.
|
11 |
成昊霖,年瑶,韩优.CH4和CO2共转化反应机理研究进展[J].化工进展, 2024, 43(1): 60-75.
|
|
CHENG Haolin, NIAN Yao, HAN You. Progress in the mechanism of CH4 and CO2 co-conversion reactions[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 60-75.
|
12 |
WANTEN Bart, VERTONGEN Rani, DE MEYER Robin, et al. Plasma-based CO2 conversion: How to correctly analyze the performance?[J]. Journal of Energy Chemistry, 2023, 86: 180-196.
|
13 |
PATIL Bhaskar S, VAN KAATHOVEN Alwin S-R, PEETERS Floran J-J, et al. Deciphering the synergy between plasma and catalyst support for ammonia synthesis in apacked dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2020, 53 (14): 144003.
|
14 |
WANG Li, YI Yanhui, WU Chunfei, et al. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis[J]. Angewandte Chemie (International Ed in English), 2017, 56 (44): 13679-13683.
|
15 |
WANG Yuezhao, FAN Linhui, XU Hongli, et al. Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts[J]. Applied Catalysis B: Environmental, 2022, 315: 121583.
|
16 |
GORBANEV Yury, ENGELMANN Yannick, VAN’T VEER Kevin, et al. Al2O3-supported transition metals for plasma-catalytic NH3 synthesis in a DBD plasma: Metal activity and insights into mechanisms[J]. Catalysts, 2021, 11 (10): 1230.
|
17 |
JANTARANG Salina, LIGORI Simone, HORLYCK Jonathan, et al. Plasma-induced catalyst support defects for the photothermal methanation of carbon dioxide[J]. Materials, 2021, 14 (15): 4195.
|
18 |
ENGELMANN Yannick, MEHTA Prateek, NEYTS Erik C, et al. Predicted influence of plasma activation on nonoxidative coupling of methane on transition metal catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (15): 6043-6054.
|
19 |
ZHAO Binran, YAO Yujie, SHI Haofeng, et al. Preparation of Ni/SiO2 catalyst via novel plasma-induced micro-combustion method[J]. Catalysis Today, 2019, 337: 28-36.
|
20 |
孙万启,宋华,韩素玲, 等. 废气治理低温等离子体反应器的研究进展[J]. 化工进展, 2011,30(5):930-935, 996.
|
|
SUN Wanqi, SONG Hua, HAN Suling, et al. Advances in research on non-thermal plasma reactors of waste gas treatment[J]. Chemical Industry and Engineering Progress,2011,30(5):930-935, 996.
|
21 |
RAHANGDALE Khushbu K, GANGULY Subhas. Effect of oxygen vacancies on the dielectricity of Ga doped equimolar BiMnO3-BaTiO3 characterized by XPS analysis[J]. Physica B: Condensed Matter, 2022, 626: 413570.
|
22 |
ALCALÁ VARILLA L A, SERIANI N, MONTOYA J A. Molecular adsorption and dissociation of CO2 on TiO2 anatase (001) activated by oxygen vacancies[J]. Journal of Molecular Modeling, 2019, 25 (8): 231.
|
23 |
NING Zhiyuan, WEN Leicheng, LI Ruoran, et al. Oxygen vacancy-enriched Cu/CeO2-ZrO2 catalyst with highly dispersed Cu0 towards plasma catalytic advanced CO2 utilization[J]. Journal of Cleaner Production, 2024, 442: 141010.
|
24 |
WANG Chunfen, LU Yonglian, ZHANG Yu, et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites[J]. Nano Research, 2023, 16 (10): 12153-12164.
|
25 |
LIANG Chuanfei, ZHANG Lijun, ZHENG Yan, et al. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates[J]. Fuel, 2020, 262: 116521.
|
26 |
NAKAMURA Kengo, XIAO Peipei, OSUGA Ryota, et al. Impacts of framework Al distribution and acidic properties of Cu-exchanged CHA-type zeolite on catalytic conversion of methane into methanol followed by lower hydrocarbons[J]. Catalysis Science & Technology, 2023, 13 (9): 2648-2651.
|
27 |
JOHNSON Blake A, DI IORIO John R, Yuriy ROMÁN-LESHKOV. Tailoring distinct reactive environments in Lewis acid zeolites for liquid phase catalysis[J]. Accounts of Materials Research, 2021, 2 (11): 1033-1046.
|
28 |
Gina NOH, Erwin LAM, BREGANTE Daniel T, Meyet J, Šot Petr, Flaherty D W, Copéret Christophe. Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu-based CO2 hydrogenation catalysts[J]. Angewandte Chemie (International Ed in English), 2021, 60(17): 9650-9659.
|
29 |
TU Chunyan, NIE Xiaowa, CHEN Jingguang G. Insight into acetic acid synthesis from the reaction of CH4 and CO2 [J]. ACS Catalysis, 2021, 11(6): 3384-3401.
|
30 |
FELIZ Maxwell Quezada, POLAERT Isabelle, LEDOUX Alain, et al. Influence of ionic conductivity and dielectric constant of the catalyst on DBD plasma-assisted CO2 hydrogenation into methanol[J]. Journal of Physics D: Applied Physics, 2021, 54 (33): 334003.
|