1 |
LI Matthew, LU Jun, CHEN Zhongwei, et al. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
|
2 |
LIU Wen, Oh Pilgun, LIU Xien, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
|
3 |
WANG Qingsong, JIANG Lihua, YU Yan, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
|
4 |
LI Jianlin, FLEETWOOD James, HAWLEY Blake W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956.
|
5 |
LIN Dingchang, LIU Yayuan, CUI Yi. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
|
6 |
CUI Zehao, XIE Qiang, ARUMUGAM Manthiram. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15324-15332.
|
7 |
CUI Zehao, XIE Qiang, MANTHIRAM A. A cobalt- and manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(41): 2102421.
|
8 |
CUI Zehao, GUO Zezhou, MANTHIRAM A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries[J]. Advanced Energy Materials, 2023, 13(12): 2203853.
|
9 |
XU Chao, REEVES P J, JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2003404.
|
10 |
LANGDON Jayse, CUI Zehao, MANTHIRAM Arumugam. Role of electrolyte in overcoming the challenges of LiNiO2 cathode in lithium batteries[J]. ACS Energy Letters, 2021, 6(11): 3809-3816.
|
11 |
WU Feng, LIU Na, CHEN Lai, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57.
|
12 |
WANG Feng, BAI Jianming. Synthesis and processing by design of high-nickel cathode materials[J]. Batteries & Supercaps, 2022, 5(1): e202100174.
|
13 |
SEONG Won Mo, KIM Youngjin, MANTHIRAM Arumugam. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2020, 32(22): 9479-9489.
|
14 |
王志鸿, 朱华威, 余海峰, 等. 共沉淀法制备高镍氧化物正极材料前体研究进展[J]. 化工进展, 2021, 40(9): 5097-5106.
|
|
WANG Zhihong, ZHU Huawei, YU Haifeng, et al. Research process on the synthesis of Ni-rich oxide cathode precursors by co-precipitation method[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5097-5106.
|
15 |
王策, 王国庆, 王二锐, 等. 锂离子电池正极材料合成及改性[J]. 化工进展, 2021, 40(9): 4998-5011.
|
|
WANG Ce, WANG Guoqing, WANG Errui, et al. Synthesis and modification of lithium-ion battery cathode materials[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011.
|
16 |
GE Mingyuan, Sungun WI, LIU Xiang, et al. Kinetic limitations in single-crystal high-nickel cathodes[J]. Angewandte Chemie International Edition, 2021, 60(32): 17350-17355.
|
17 |
YANG Chengkai, SHAO Ruiwen, WANG Qian, et al. Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism[J]. Energy Storage Materials, 2021, 35: 62-69.
|