Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 882-893.DOI: 10.16085/j.issn.1000-6613.2023-1497
• Invited review • Previous Articles Next Articles
HUANG Sheng1(), YANG Zhenli1, LI Zhenyu2()
Received:
2023-08-28
Revised:
2023-10-07
Online:
2024-03-07
Published:
2024-02-25
Contact:
LI Zhenyu
通讯作者:
李振宇
作者简介:
黄晟(1975—),男,研究员,博士生导师,化学工程硕士,公共管理博士,现主要从事环境与化工发展战略、科技教育政策研究工作。E-mail:huangsh@ysu.edu.cn。
CLC Number:
HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893.
黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1497
制氢方式 | 化石能源制氢 | 工业副产氢 | 电解水制氢 |
---|---|---|---|
过程 | 利用煤炭、石油和天然气等化石燃料,通过化学热解或者气化生成氢气(灰氢)。利用碳捕集与封存技术(CCS),可以降低制氢过程中的碳排放,从而获取“蓝氢” | 以焦炉煤气、氯碱尾气、丙烷脱氢为代表的工业副产气制氢,氢气是工业过程中的副产品 | 以碱性电解水、酸性质子交换膜电解水为代表,通过电解水反应获得氢气与氧气,利用光电、风电等可再生能源电解水,过程中不产生二氧化碳,获取的氢气为绿氢 |
应用情况 | 应用广泛 | 应用广泛 | 应用较少 |
优点 | 成本低,技术成熟 | 成本低,技术成熟 | 制氢纯度高,过程清洁无污染 |
缺点 | 有大量二氧化碳排放 | 氢气纯度低,有大量二氧化碳排放 | 成本高,技术有待进一步研发 |
制氢方式 | 化石能源制氢 | 工业副产氢 | 电解水制氢 |
---|---|---|---|
过程 | 利用煤炭、石油和天然气等化石燃料,通过化学热解或者气化生成氢气(灰氢)。利用碳捕集与封存技术(CCS),可以降低制氢过程中的碳排放,从而获取“蓝氢” | 以焦炉煤气、氯碱尾气、丙烷脱氢为代表的工业副产气制氢,氢气是工业过程中的副产品 | 以碱性电解水、酸性质子交换膜电解水为代表,通过电解水反应获得氢气与氧气,利用光电、风电等可再生能源电解水,过程中不产生二氧化碳,获取的氢气为绿氢 |
应用情况 | 应用广泛 | 应用广泛 | 应用较少 |
优点 | 成本低,技术成熟 | 成本低,技术成熟 | 制氢纯度高,过程清洁无污染 |
缺点 | 有大量二氧化碳排放 | 氢气纯度低,有大量二氧化碳排放 | 成本高,技术有待进一步研发 |
公司名称 | 型号 | 容积 /L | 工作压力 /MPa | 质量储氢密度 /% | 质量 /kg | 储氢量 /kg |
---|---|---|---|---|---|---|
Hexagon Lincoln Inc | Ⅳ | 64 | 70以上 | 6.0 | 43.0 | 2.60 |
丰田Mirai | Ⅳ | 60 | 70以上 | 5.7 | 42.8 | 2.45 |
国内储氢瓶 | Ⅲ | 52 | 30~70 | 多为4.0~5.0 | 52.0 | 2.10 |
公司名称 | 型号 | 容积 /L | 工作压力 /MPa | 质量储氢密度 /% | 质量 /kg | 储氢量 /kg |
---|---|---|---|---|---|---|
Hexagon Lincoln Inc | Ⅳ | 64 | 70以上 | 6.0 | 43.0 | 2.60 |
丰田Mirai | Ⅳ | 60 | 70以上 | 5.7 | 42.8 | 2.45 |
国内储氢瓶 | Ⅲ | 52 | 30~70 | 多为4.0~5.0 | 52.0 | 2.10 |
项目 | 碱性电解水(ALK) | 质子交换膜电解水(PEM) | 固体氧化物电解水制氢(SOEC) | 阴离子交换膜电解水(AEM) |
---|---|---|---|---|
优点 | 技术成熟,可选材料多,成本低,商业化程度高 | 产氢纯度高,结构紧凑,响应速度快,电流密度高 | 系统效率高,无需贵金属催化剂 | 无需贵金属催化剂,启停快 |
缺点 | 电流密度小,损耗高,电解质有污染 | 成本高,可用催化剂少 | 技术不成熟,响应慢,寿命短,系统设计困难 | 技术不成熟,处于起步阶段 |
项目 | 碱性电解水(ALK) | 质子交换膜电解水(PEM) | 固体氧化物电解水制氢(SOEC) | 阴离子交换膜电解水(AEM) |
---|---|---|---|---|
优点 | 技术成熟,可选材料多,成本低,商业化程度高 | 产氢纯度高,结构紧凑,响应速度快,电流密度高 | 系统效率高,无需贵金属催化剂 | 无需贵金属催化剂,启停快 |
缺点 | 电流密度小,损耗高,电解质有污染 | 成本高,可用催化剂少 | 技术不成熟,响应慢,寿命短,系统设计困难 | 技术不成熟,处于起步阶段 |
1 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
2 | 陈洪波, 王新春. 氢产业发展战略的国际比较及政策建议[J]. 企业经济, 2021, 40(12): 126-134. |
CHEN Hongbo, WANG Xinchun. International comparative analysis and policy suggestions of development strategy and policy of hydrogen industry[J]. Enterprise Economy, 2021, 40(12): 126-134. | |
3 | 孙德强, 张俊武, 吴小梅, 等. 我国氢能产业发展现状、挑战及对策[J]. 中国能源, 2022, 44(9): 27-35. |
SUN Deqiang, ZHANG Junwu, WU Xiaomei, et al. Development status, challenges and countermeasures of hydrogen energyindustry in China[J]. Energy of China, 2022, 44(9): 27-35. | |
4 | IEA. Global hydrogen review 2021[EB/OL]. [2023-07-16]. . |
5 | 国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-24) [2023-02-11]. . |
National Development and Reform Commission, National Energy Administration. Medium and long-term development plan of hydrogen energy (2021—2035) [EB/OL]. (2022-03-24) [2023-02-11]. . | |
6 | ANKICA K, MATEJ P, DORIA M. Hydrogen in energy transition: A review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035. |
7 | Ministry of Economy, Trade and Industry (METI). Basic hydrogen strategy (key points) [R/OL]. Japan: METI, 2017 [2022-02-24]. . |
8 | New Energy and Industrial Technology Development Organization (NEDO). Green Japan, Green Innovation [EB/OL]. [2022-02-24]. . |
9 | 朱敏慧. 丰田氢燃料电池战略的背后[J]. 汽车与配件, 2020(7): 42-43. |
ZHU Minhui. Development of Toyota's hydrogen fuel cell strategy[J]. Automobile & Parts, 2020(7): 42-43. | |
10 | BUTKER L, YIGITCANLAR T, PAZ A. Smart urban mobility innovations: A comprehensive review and evaluation[J]. IEEE Access, 2020, 8(16): 196034-196049. |
11 | 蒋瑜洁, 丁钰慧, 关昕. 日本推动氢燃料电池汽车产业发展的机制研究[J]. 现代日本经济, 2022, 41(1): 27-46. |
JIANG Yujie, DING Yuhui, GUAN Xin. The growth-driving mechanism for the hydrogen fuel cell vehicle industry in Japan[J]. Contemporary Economy of Japan, 2022, 41(1): 27-46. | |
12 | Japan Ministry of Economy Trade and Industry strategy for developing hydrogen and fuel-cell technologies[R]. Tokyo: Japan Ministry of Economy, Trade and Industry, 2019. |
13 | 丁曼. 日本氢能战略的特征、动因与国际协调[J]. 现代日本经济, 2021(4): 28-41. |
DING Man. Characteristics, motivation, international coordination of Japan's hydrogen strategy[J]. Contemporary Economy of Japan, 2021(4): 28-41. | |
14 | 陈霁, 司云波. 全球氢能技术创新趋势[J]. 世界石油工业, 2023, 30(1): 82. |
CHEN Ji, SI Yunbo. Global trends in hydrogen energy technology innovation[J]. World Petroleum Industry, 2023, 30(1): 82. | |
15 | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. | |
16 | 杨春. 我国氢能产业发展现状及战略政策动态研究[J]. 电工技术, 2022(2): 20-22. |
YANG Chun. Research on the development status and strategic policy trends of China's hydrogen energy[J]. Electric Engineering, 2022(2): 20-22. | |
17 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
18 | 张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018, 37(11): 1207-1212. |
ZHANG Zhiyun, ZHANG Guoqiang, LIU Yanqiu, et al. Research status and development direction of on-board hydrogen storage technologies[J]. Oil & Gas Storage and Transportation, 2018, 37(11): 1207-1212. | |
19 | 我国长距离输氢技术获突破天然气管道掺氢比例达到 24%[EB/OL]. (2023-04-16) [2023-07-16]. . |
Breakthrough in long-distance hydrogen transmission technology in China, with a hydrogen blending ratio of 24% in natural gas pipe lines [EB/OL]. (2023-04-16) [2023-07-16]. . | |
20 | 何盛宝, 李庆勋, 王奕然, 等. 世界氢能产业与技术发展现状及趋势分析[J]. 石油科技论坛, 2020, 39(3): 17-24. |
HE Shengbao, LI Qingxun, WANG Yiran, et al. Research on current conditions and development trends of global hydrogen energy industry and technology[J]. Petroleum Science and Technology Forum, 2020, 39(3): 17-24. | |
21 | MANOHARAN Y, HOSSEINI S E, BUTLER B, et al. Hydrogen fuel cell vehicles: Current status and future prospect[J]. Applied Sciences, 2019, 9(11): 2296. |
22 | 殷伊琳. 我国氢能产业发展现状及展望[J]. 化学工业与工程, 2021, 38(4): 78-83. |
YIN Yilin. Present situation and prospect of hydrogen energy industry[J]. Chemical Industry and Engineering, 2021, 38(4): 78-83. | |
23 | 李星国. 氢燃料燃气轮机与大规模氢能发电[J]. 自然杂志, 2023, 45(2): 113-118. |
LI Xingguo. Hydrogen fueled gas turbines and large-scale hydrogen power generation[J]. Chinese Journal of Nature, 2023, 45(2): 113-118. | |
24 | 张志翔, 张宝军. 碳一化工技术路线简述[J]. 化工中间体, 2008(11): 54-57. |
ZHANG Zhixiang, ZHANG Baojun. Overview of carbon-one chemical technology route[J]. Modern Chemical Research, 2008(11): 54-57. | |
25 | 李忠, 张鹏, 孟凡会 等. 双碳模式下碳一化工技术发展趋势[J]. 洁净煤技术, 2022, 28(1): 1-11. |
LI Zhong, ZHANG Peng, MENG Fanhui, et al. Trend in development of carbon-one chemical technology under model of emission peak and neutrality of carbon dioxide[J]. Clean Coal Technology, 2022, 28(1): 1-11. | |
26 | 李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019, 39(5): 19-23. |
LI Qingxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019, 39(5): 19-23. | |
27 | 苏静, 张宗飞, 张大洲. 二氧化碳加氢制甲醇的技术进展及展望[J]. 化肥设计, 2022, 60(2): 6-9. |
SU Jing, ZHANG Zongfei, ZHANG Dazhou. Technological progress and prospects of carbon dioxide hydrogenation to methan[J]. Chemical Fertilizer Design, 2022, 60(2): 6-9. | |
28 | 王晶, 王朋. 国内外氢冶金技术研究进展[J]. 河北冶金, 2022(4): 1-5. |
WANG Jing, WANG Peng. Research progress of hydrogen metallurgy technology in the domestic and overseas[J]. Hebei Metallurgy, 2022(4): 1-5. | |
29 | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. | |
30 | 尹正宇, 符传略, 韩奎华, 等. 生物质制氢技术研究综述[J]. 热力发电, 2022, 51(11): 37-48. |
YIN Zhengyu, FU Chuanlue, HAN Kuihua, et al. Review on technologies of hydrogen production from biomass[J]. Thermal Power Generation, 2022, 51(11): 37-48. | |
31 | 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11. |
LI Jianlin, LIANG Zhonghao, LI Guanghui, et al. Research on key technologies of solar hydrogen production[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 2-11. | |
32 | 李智勇, 张一凡, 李文安, 等. 核能制氢不同工艺与速率的经济性研究[J]. 现代化工, 2021, 41(7): 29-34 |
LI Zhiyong, ZHANG Yifan, LI Wen'an, et al. Economic study on different processes and rates of hydrogen production by nuclear power plant[J]. Modern Chemical Industry, 2021, 41(7): 29-34 | |
33 | 张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4): 193-203. |
ZHANG Ping, YU Bo, XU Jingming. Development of the technology for nuclear production of hydrogen[J]. Journal of Nuclear and Radiochemistry, 2011, 33(4): 193-203. | |
34 | XUE Fangming, SU Jingcheng, LI Peipei, et al. Application of proton exchange membrane electrolysis of water hydrogen production technology in power plant[J]. IOP Conference Series: Earth and Environmental Science, 2021, 631(1). |
35 | MILLER A H, BOUZEK K, HNAT J, et al. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5). |
36 | 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427. |
MA Xiaofeng, ZHANG Shuhan, HE Yong, et al. Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 420-427. | |
37 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
38 | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
39 | LENG Yongjun, CHENG Guang, MENDOZA Alfonso J, et al. Solid-state water electrolysis with an alkaline membrane[J]. Journal of the American Chemical Society, 2012, 134(22): 9054-9057. |
40 | 马颖, 丁睿, 刘岩岩, 等. 阴离子交换膜电解水制氢关键技术研究[J]. 今日制造与升级, 2022(9): 131-133. |
MA Ying, DING Rui, LIU Yanyan, et al. Study on key technologies of anion exchange membrane water electrolysis[J]. Manufacture & Upgrading Today, 2022(9): 131-133. | |
41 | 孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6. |
MENG Zhaoxin, HE Qing, HU Huawei, et al. Development situation and consideration of hydrogen energy industry in China[J]. Modern Chemical Industry, 2022, 42(1): 1-6. | |
42 | 胡杭健, 刘再斌, 段志祥, 等. 我国加氢站建造趋势分析[J]. 能源与环境, 2022(5): 6-9. |
HU Hangjian, LIU Zaibin, DUAN Zhixiang, et al. Analysis of the construction trend of hydrogen refueling stations in China[J]. Energy and Environment, 2022(5): 6-9. | |
43 | 俞典, 叶子菀. 加氢站规划布局的分析与探讨[J]. 中外能源, 2022, 27(11): 17-22. |
YU Dian, YE Ziwan. Analysis and discussion on layout planning of hydrogen stations[J]. Sino-Global Energy, 2022, 27(11): 17-22. | |
44 | 中国电动汽车百人会. 中国氢能产业发展报告2020[EB/OL]. (2020-10-15) [2023-07-16]. . |
ChinaEV 100. Report on the Development of China's Hydrogen Energy Industry 2020[EB/OL]. (2020-10-15) [2023-07-16]. . |
[1] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[2] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[3] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[4] | SUN Chongzheng, LI Yuxing, XU Jie, HAN Hui, SONG Guangchun, LU Xiao. Offshore adaptability enhancement mechanism of falling film flow outside the FLH2 channel tube during floating hydrogen energy storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 338-352. |
[5] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[6] | WANG Shang, YAO Yao, WANG Jia, DONG Didi, CHANG Ganggang. Hierarchical porous carbon supported CoP derived from CoZn-MOF and its hydrogen evolution properties [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 447-454. |
[7] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
[8] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[9] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[10] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[13] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[14] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[15] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |