Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 872-881.DOI: 10.16085/j.issn.1000-6613.2023-2089
• Column: multiphase flow test • Previous Articles Next Articles
WANG Yixiao1(), ZHANG Dan1(), TU Maoping1, ZHOU Wenbo1, ZHAO Bingchao2
Received:
2023-11-28
Revised:
2023-12-27
Online:
2024-03-07
Published:
2024-02-25
Contact:
ZHANG Dan
王一笑1(), 张丹1(), 涂茂萍1, 周文博1, 赵冰超2
通讯作者:
张丹
作者简介:
王一笑(1999—),男,硕士研究生,研究方向为多相流动传热。E-mail:mystery1412@stu.xjtu.edu.cn。
基金资助:
CLC Number:
WANG Yixiao, ZHANG Dan, TU Maoping, ZHOU Wenbo, ZHAO Bingchao. Heat flux field measurement technique by dual-film quantum dots[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 872-881.
王一笑, 张丹, 涂茂萍, 周文博, 赵冰超. 双膜量子点表面热流密度场测量技术[J]. 化工进展, 2024, 43(2): 872-881.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2089
设备 | 型号 | 主要参数 |
---|---|---|
CCD相机 | GS3-U3-32S4M-C | 帧频0~121fps; 曝光时间0.005ms~32s;增益0~47dB;精度3.45×10-6m |
滤光片 | ZLM-680, ZLM-600 | 带通波段680nm或600nm; 透过率≥80% |
紫外光源 | 光宏 | 波长395~400nm |
温度控制器 | C507 | 最小响应时间0.5s;精度0.5% |
信号发生器 | VC2015H | 频率1μHz~100MHz;误差±5ppm |
热电偶 | T型 | 温度范围-200~350℃;丝径0.5mm; 精度0.5℃ |
温度计 | HT-9815 | 温度范围-200~1372℃;精度0.1℃ |
稳压电源 | IT6322A | 输出电压0~30V,精度≤0.03%+10mV 输出电流0~3A,精度≤0.1%+5mA |
设备 | 型号 | 主要参数 |
---|---|---|
CCD相机 | GS3-U3-32S4M-C | 帧频0~121fps; 曝光时间0.005ms~32s;增益0~47dB;精度3.45×10-6m |
滤光片 | ZLM-680, ZLM-600 | 带通波段680nm或600nm; 透过率≥80% |
紫外光源 | 光宏 | 波长395~400nm |
温度控制器 | C507 | 最小响应时间0.5s;精度0.5% |
信号发生器 | VC2015H | 频率1μHz~100MHz;误差±5ppm |
热电偶 | T型 | 温度范围-200~350℃;丝径0.5mm; 精度0.5℃ |
温度计 | HT-9815 | 温度范围-200~1372℃;精度0.1℃ |
稳压电源 | IT6322A | 输出电压0~30V,精度≤0.03%+10mV 输出电流0~3A,精度≤0.1%+5mA |
1 | BABICH A Y, ZAINULLINA E R, SAPOZHNIKOV S Z. Gradient heat flux measurement in study of heat transfer during steam condensation inside pipes[J]. Journal of Physics: Conference Series, 2020, 1565(1): 012016. |
2 | SAPOZHNIKOV S Z, MITYAKOV V Y, BABICH A Y, et al. Gradient heat flux measurement in condensation study at inner and outer surfaces of the pipe[J]. Journal of Physics: Conference Series, 2018, 1105: 012059. |
3 | 罗潇, 刘佳兴, 郭航, 等. 一体式再生燃料电池温度和热流密度非原位同步测量[J]. 新能源进展, 2018, 6(3): 175-180. |
LUO Xiao, LIU Jiaxing, GUO Hang, et al. Ex situ simultaneous measurement of temperature and heat flux in unitized regenerative fuel cell[J]. Advances in New and Renewable Energy, 2018, 6(3): 175-180. | |
4 | IDI Mohamed Moussa EL, KARKRI Mustapha, ABDOU TANKARI Mahamadou, et al. Hybrid cooling based battery thermal management using composite phase change materials and forced convection[J]. Journal of Energy Storage, 2021, 41: 102946. |
5 | CELESTINA RICHARD, SPERLING SPENCER, CHRISTENSEN LOUIS, et al. Development of new single and high-density heat-flux gauges for unsteady heat transfer measurements for a rotating transonic turbine[C]//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21-25, 2020, Virtual, Online. 2021 |
6 | LI Haiwang, WANG Meng, YOU Ruquan. Impact of radiative heat flux on turbine blade heat transfer in high temperature environments[J]. Applied Thermal Engineering, 2022, 212: 118505. |
7 | ABDOLLAHI Ayoub, NORRIS S E, SHARMA Rajnish N. Heat transfer measurement techniques in microchannels for single and two-phase Taylor flow[J]. Applied Thermal Engineering, 2019, 162: 114280. |
8 | MATSUDA Yu, KAWANAMI Osamu, ORIMO Riki, et al. Simultaneous measurement of gas-liquid interface motion and temperature distribution on heated surface using temperature-sensitive paint[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119567. |
9 | 朱广生, 聂春生, 曹占伟, 等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学, 2019, 33(2): 1-10. |
ZHU Guangsheng, NIE Chunsheng, CAO Zhanwei, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1-10. | |
10 | 孙琦. 高超声速风洞热流测量试验机构设计与研究[D]. 重庆: 重庆大学, 2018. |
SUN Qi. Design and research of heat flow test mechanism in hypersonic wind tunnel[D].Chongqing: Chongqing University, 2018. | |
11 | 高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程, 2020, 37(3): 218-227. |
GAO Qinghua, Dianfu QIE. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227. | |
12 | ETGAR Lioz, GAO Peng, QIN Peng, et al. A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response[J]. Journal of Materials Chemistry A, 2014, 2(30): 11586-11590. |
13 | ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. |
14 | BAWENDI Moungi. The colorful fluorescence of semiconductor nanocrystal quantum dots: single dots, charged dots, lasing dots[C]//Annual APS March Meeting 2003. American Physical Society, 2003. |
15 | 隋净蓉. 碲化镉量子点薄膜的制备及其光物理特性研究[D]. 哈尔滨: 黑龙江大学, 2018. |
SUI Jingrong. Preparation and photophysical properties of CdTe quantum dot thin films[D].Harbin: Helongjiang University, 2018. | |
16 | 闫海珍, 程成, 张庆豪. 温度对CdSe/ZnS量子点吸收光谱和光致发光谱的影响[J]. 发光学报, 2008, 29(1): 166-170. |
YAN Haizhen, CHENG Cheng, ZHANG Qinghao. Effect of the temperature on absorption and photoluminescence spectra of CdSe/ZnS quantum dots[J]. Chinese Journal of Luminescence, 2008, 29(1): 166-170. | |
17 | 陈中师, 王河林, 隋成华, 等. 基于CdSe/ZnS核壳量子点薄膜的荧光温度传感器[J]. 发光学报, 2014, 35(10): 1215-1220. |
CHEN Zhongshi, WANG Helin, SUI Chenghua, et al. Fluorescence temperature sensor based on CdSe/ZnS core-shell quantum dots thin film[J]. Chinese Journal of Luminescence, 2014, 35(10): 1215-1220. | |
18 | 耿琰, 王河林. 双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器[J]. 中国激光, 2016, 43(5): 0514003. |
GENG Yan, WANG Helin. Reflective fluorescence temperature sensor based on dual-granularity CdSe/ZnS doped quantum dots thin films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003. | |
19 | 严金华, 徐帅锋, 沈旭辉, 等. 基于PbSe量子点的全光纤光功率密度和温度传感器[J]. 激光与光电子学进展, 2018, 55(10): 100602. |
YAN Jinhua, XU Shuaifeng, SHEN Xuhui, et al. All fiber-optic sensor measuring optical power density and temperature based on PbSe quantum dots[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100602. | |
20 | 闫柯, 高闯, 朱永生, 等. 基于碲化镉量子点的滚动轴承内圈测温原理与实现技术[J]. 机械工程学报, 2017, 53(4): 134-140. |
YAN Ke, GAO Chuang, ZHU Yongsheng, et al. Research on the temperature measurement principle and realization technology of rolling bearing inner ring based on Cd Te quantum dots[J]. Journal of Mechanical Engineering, 2017, 53(4): 134-140. | |
21 | HASHIMI Husain AL, KIM Jungho. Quantum dot temperature sensor ab initio test: Droplet vaporization heat transfer[C]//Proceedings of ASME 2016 Heat Transfer Summer Conference Collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, July 10-14, 2016, Washington, DC, USA. 2016 |
22 | HASHIMI Husain AL, HAMMER Caleb F, LEBON Michel T, et al. Phase-change heat transfer measurements using temperature-sensitive paints[J]. Journal of Heat Transfer, 2018, 140(3): 031601. |
23 | 牛照程. 量子点温度场测量技术及其在液滴蒸发实验中的应用[D]. 西安: 西安交通大学, 2020. |
NIU Zhaocheng. Study on evaporation characteristics of droplet by using quantum dots temperature field measurement technique[D]. Xi’an: Xi’an Jiaotong University, 2020. | |
24 | MOFFAT R J. Contributions to the theory of single-sample uncertainty analysis[J]. Journal of Fluids Engineering, 1982, 104(2): 250-258. |
25 | 范云霄, 隋秀华. 测试技术与信号处理[M]. 2版. 北京: 中国计量出版社, 2006. |
FAN Yunxiao, SUI Xiuhua. Testing technology and signal processing[M]. 2nd ed. Beijing: China Metrology Publishing House, 2006. | |
26 | 张存芳, 李秀芬, 薛熊. 温度传感器时间常数测试[J]. 宇航计测技术, 1999, 19(2): 31-34. |
ZHANG Cunfang, LI Xiufen, XUE Xiong. Time constant test of temperature sensors[J]. Journal of Astronautic Metrology and Measurement, 1999, 19(2): 31-34. |
[1] | HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585. |
[2] | ZHOU Wu, GONG Wenchao, XU Rixin. Online measurement techniques for multi-parameters of particles based on defocus imaging [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 586-592. |
[3] | ZHANG Shiwei, LI Yuyu, MENG Lei, NING Xiang, SU Mingxu. Online measurement of particle size of high concentration slurry two-phase flows based on ultrasound method [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 593-601. |
[4] | SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. |
[5] | SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. |
[6] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[7] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[8] | SHENG Wen, YU Bo, GUO Han, ZHOU Huaichun. Liquid film thickness distribution detection based on transverse shear interferometry system [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 743-751. |
[9] | WANG Chao, CAO Hui, MA Guoji, YE Jiamin, JI Xueling. EMD-based electrostatic detection of screw conveyor blade motion [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 752-759. |
[10] | XU Yi, LI Yi, MA Zhiyang, WANG Haigang. Dynamic signal analysis for gas-oil two-phase flow in time-frequency domain based on electrical capacitance tomography [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 855-864. |
[11] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[12] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[13] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[14] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[15] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |