Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 356-363.DOI: 10.16085/j.issn.1000-6613.2023-0143
• Materials science and technology • Previous Articles Next Articles
DAI Huantao(), CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang()
Received:
2023-02-06
Revised:
2023-03-20
Online:
2023-11-30
Published:
2023-10-25
Contact:
ZHANG Xueyang
戴欢涛(), 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨()
通讯作者:
张学杨
作者简介:
戴欢涛(2002—),男,本科生,研究方向为生物炭及环境治理技术。E-mail:daihuanta@163.com。
基金资助:
CLC Number:
DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363.
戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0143
生物碳名称 | 比表面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 平均孔径/nm | 灰分/% | 碱度/mmol·g-1 | 产率/% |
---|---|---|---|---|---|---|---|
MNa600 | 19.38 | 0.0503 | 0.0083 | 5.20 | 24.5 | 1.32 | 47.2 |
MY1.5 | 13.11 | 0.0163 | 0.0054 | 2.48 | 12.6 | 0.74 | 79.6 |
MY3 | 36.98 | 0.0462 | 0.0166 | 2.50 | 12.8 | 0.58 | 87.1 |
MY5 | 35.17 | 0.0405 | 0.0159 | 2.30 | 5.1 | 0.61 | 89.5 |
MY10 | 47.82 | 0.0409 | 0.0215 | 1.71 | 6.4 | 0.53 | 91.8 |
MY15 | 51.15 | 0.0592 | 0.0207 | 2.31 | 8.4 | 0.56 | 91.8 |
YZP600 | 13.95 | 0.0213 | 0.0025 | 3.06 | 5.6 | 0.45 | 28.1 |
生物碳名称 | 比表面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 平均孔径/nm | 灰分/% | 碱度/mmol·g-1 | 产率/% |
---|---|---|---|---|---|---|---|
MNa600 | 19.38 | 0.0503 | 0.0083 | 5.20 | 24.5 | 1.32 | 47.2 |
MY1.5 | 13.11 | 0.0163 | 0.0054 | 2.48 | 12.6 | 0.74 | 79.6 |
MY3 | 36.98 | 0.0462 | 0.0166 | 2.50 | 12.8 | 0.58 | 87.1 |
MY5 | 35.17 | 0.0405 | 0.0159 | 2.30 | 5.1 | 0.61 | 89.5 |
MY10 | 47.82 | 0.0409 | 0.0215 | 1.71 | 6.4 | 0.53 | 91.8 |
MY15 | 51.15 | 0.0592 | 0.0207 | 2.31 | 8.4 | 0.56 | 91.8 |
YZP600 | 13.95 | 0.0213 | 0.0025 | 3.06 | 5.6 | 0.45 | 28.1 |
生物炭名称 | 伪一级动力学模型 | 伪二级动力学模型 | Avrami 模型 | 实验吸附量 /mg·g-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qe/mg·g-1 | k1/min-1 | R2 | qe/mg·g-1 | k2/g·mg-1·min-1 | R2 | qe/mg·g-1 | kA/min-1 | nA | R2 | ||
MY1.5 | 41.59 | 0.7325 | 0.9492 | 44.14 | 0.0273 | 0.9561 | 41.77 | 0.7262 | 0.8697 | 0.9515 | 42.93 |
MY3 | 44.44 | 0.9203 | 0.9520 | 46.68 | 0.0337 | 0.9283 | 44.32 | 0.9300 | 1.1780 | 0.9544 | 45.51 |
MY5 | 43.70 | 0.8264 | 0.9510 | 46.12 | 0.0301 | 0.9453 | 43.72 | 0.8251 | 0.9788 | 0.9510 | 44.95 |
MY10 | 45.28 | 0.8383 | 0.9433 | 47.80 | 0.0292 | 0.9450 | 45.34 | 0.8348 | 0.9503 | 0.9435 | 46.84 |
MY15 | 45.95 | 0.8984 | 0.9479 | 48.35 | 0.0314 | 0.9351 | 45.88 | 0.9036 | 1.0890 | 0.9485 | 47.36 |
YZP600 | 41.18 | 0.6874 | 0.9352 | 43.91 | 0.0251 | 0.9615 | 41.63 | 0.6720 | 0.7663 | 0.9438 | 43.15 |
生物炭名称 | 伪一级动力学模型 | 伪二级动力学模型 | Avrami 模型 | 实验吸附量 /mg·g-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qe/mg·g-1 | k1/min-1 | R2 | qe/mg·g-1 | k2/g·mg-1·min-1 | R2 | qe/mg·g-1 | kA/min-1 | nA | R2 | ||
MY1.5 | 41.59 | 0.7325 | 0.9492 | 44.14 | 0.0273 | 0.9561 | 41.77 | 0.7262 | 0.8697 | 0.9515 | 42.93 |
MY3 | 44.44 | 0.9203 | 0.9520 | 46.68 | 0.0337 | 0.9283 | 44.32 | 0.9300 | 1.1780 | 0.9544 | 45.51 |
MY5 | 43.70 | 0.8264 | 0.9510 | 46.12 | 0.0301 | 0.9453 | 43.72 | 0.8251 | 0.9788 | 0.9510 | 44.95 |
MY10 | 45.28 | 0.8383 | 0.9433 | 47.80 | 0.0292 | 0.9450 | 45.34 | 0.8348 | 0.9503 | 0.9435 | 46.84 |
MY15 | 45.95 | 0.8984 | 0.9479 | 48.35 | 0.0314 | 0.9351 | 45.88 | 0.9036 | 1.0890 | 0.9485 | 47.36 |
YZP600 | 41.18 | 0.6874 | 0.9352 | 43.91 | 0.0251 | 0.9615 | 41.63 | 0.6720 | 0.7663 | 0.9438 | 43.15 |
生物炭名称 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
qe/mg·g-1 | Kl/kPa-1 | R2 | n | Kf/mg·g-1·(kPa1/n )-1 | R2 | |
MNa600 | 89.81 | 0.0468 | 0.9846 | 2.6319 | 13.53 | 0.9914 |
MY1.5 | 92.33 | 0.0586 | 0.9894 | 2.7880 | 16.08 | 0.9829 |
MY3 | 109.87 | 0.0503 | 0.9882 | 2.6406 | 16.98 | 0.9880 |
MY5 | 97.69 | 0.0601 | 0.9901 | 2.8151 | 17.35 | 0.9815 |
MY10 | 98.44 | 0.0609 | 0.9891 | 2.8220 | 17.61 | 0.9829 |
MY15 | 114.66 | 0.0514 | 0.9873 | 2.6579 | 18.01 | 0.9885 |
YZP600 | 99.67 | 0.0694 | 0.9859 | 3.0149 | 20.11 | 0.9806 |
生物炭名称 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
qe/mg·g-1 | Kl/kPa-1 | R2 | n | Kf/mg·g-1·(kPa1/n )-1 | R2 | |
MNa600 | 89.81 | 0.0468 | 0.9846 | 2.6319 | 13.53 | 0.9914 |
MY1.5 | 92.33 | 0.0586 | 0.9894 | 2.7880 | 16.08 | 0.9829 |
MY3 | 109.87 | 0.0503 | 0.9882 | 2.6406 | 16.98 | 0.9880 |
MY5 | 97.69 | 0.0601 | 0.9901 | 2.8151 | 17.35 | 0.9815 |
MY10 | 98.44 | 0.0609 | 0.9891 | 2.8220 | 17.61 | 0.9829 |
MY15 | 114.66 | 0.0514 | 0.9873 | 2.6579 | 18.01 | 0.9885 |
YZP600 | 99.67 | 0.0694 | 0.9859 | 3.0149 | 20.11 | 0.9806 |
1 | 顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术, 2023, 29(4): 98-108. |
GU Yongzheng, WANG Tiankun, HUANG Yan, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants[J]. Clean Coal Technology, 2023, 29(4): 98-108. | |
2 | 李艳玲, 卓振, 池亮, 等. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
LI Yanling, ZHUO Zhen, CHI Liang, et al. Research progress on preparation and application of nitrogen-doped biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. | |
3 | 盛奎川, 杨生茂. 生物炭概念的内涵及语词辨析[J]. 核农学报, 2022, 36(2): 481-487. |
SHENG Kuichuan, YANG Shengmao. Biochar concept connotation and phrases discrimination[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 481-487. | |
4 | 林春岭, 钟来元, 钟晓岚, 等. 甘蔗渣生物炭吸附-还原Cr(Ⅵ)的反应研究[J]. 农业环境科学学报. [2023-03-30]. . |
LIN Chuling, ZHONG Laiyuan, ZHONG Xiaolan, et al. Adsorption-reduction reaction between bagasse-prepared biochar and Cr(Ⅵ)[J]. Journal of Agro-Environment Science. [2023-03-30]. . | |
5 | 姜晶, 陈霄宇, 张瑞妍, 等. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, et al. Research progress of manganese-loaded biochar preparation and its application in environmental remediation[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. | |
6 | ZHANG Xueyang, GAO Bin, CREAMER Anne Elise, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
7 | LENG Lijian, XU Siyu, LIU Renfeng, et al. Nitrogen containing functional groups of biochar: an overview[J]. Bioresource Technology, 2020, 298: 122286. |
8 | MA Changdan, BAI Jiali, DEMIR M, et al. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor[J]. Fuel, 2022, 326: 125-119. |
9 | KAYA Nihan, ZEYNEP Yıldız Uzun. Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO2 capture[J]. Biomass Conversion and Biorefinery, 2021, 11(3): 1067-1083. |
10 | DISSANAYAKE P D, CHOI S, IGALAVITHANA A, et al. Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: a facile method to designer biochar fabrication[J]. Renewable Sustainable Energy Reviews, 2020, 124: 109785. |
11 | ZHANG Xueyang, CAO Lingyu, XIANG Wei, et al. Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO2 and VOCs adsorption[J]. Separation and Purification Technology, 2022, 295: 121295. |
12 | CHOUDHURY Abhinav, LANSING Stephanie. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104837. |
13 | ZHANG Han, LIAO Wei, ZHOU Xiaoming, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 126273. |
14 | BAILON Mark Xavier, CHAUDHARY Dhiraj Kumar, JEON Cheolho, et al. Impact of sulfur-impregnated biochar amendment on microbial communities and mercury methylation in contaminated sediment[J]. Journal of Hazardous Materials, 2022, 438: 129464. |
15 | BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops & Products, 2019, 139: 111526. |
16 | LUO Hao, ABU-OMAR Mahdi M. Chemicals from lignin[J]. Encyclopedia of sustainable technologies, 2017, 3: 573-585. |
17 | ZHANG Xueyang, MIAO Xudong, XIANG Wei, et al. Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)[J]. Journal of Hazardous Materials, 2021, 403: 123540. |
18 | CAO Lingyu, ZHANG Xueyang, XU Yue, et al. Straw and wood based biochar for CO2 capture: adsorption performance and governing mechanisms[J]. Separation Purification Technology, 2022, 287: 120-592. |
19 | SREEDHAR Subramanian, Øye GISLE. Aqueous carbon black dispersions stabilized by sodium lignosulfonates[J]. Colloid and Polymer Science, 2021, 299(7): 1-14. |
20 | CHEN Hong, ZHANG Yuting, LI Jialu, et al. Preparation of pickling-reheating activated alfalfa biochar with high adsorption efficiency for p-nitrophenol: characterization, adsorption behavior, and mechanism[J]. Environmental Science and Pollution Research, 2019, 26(15): 15300-15313. |
21 | MUSUMECI V, GORACCI G, SANZ CAMACHO P, et al. Correlation between the dynamics of nanoconfined water and the local chemical environment in calcium silicate hydrate nanominerals[J]. Chemistry–A European Journal, 2021, 27(44): 11309-11318. |
22 | ABDULKHANI Ali, AMIRI Elaheh, SHARIFZADEH Aghil, et al. Concurrent production of sodium lignosulfonate and ethanol from bagasse spent liquor[J]. Journal of Environmental Management, 2019, 231: 819-824. |
23 | XU Xiaoyun, ZHAO Yinghao, SIMA Jingke, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review[J]. Bioresource Technology, 2017, 241: 887-899. |
24 | 杨萍, 梁文博, 李有喜, 等. CO2/N2在MOF-74(MgxZn1-x)上的吸附分离性能研究[J]. 当代化工, 2022, 51(8): 1822-1825, 1875. |
YANG Ping, LIANG Wenbo, LI Youxi, et al. Adsorption and separation performance of CO2/N2 on MOF-74(MgxZn1-x)[J]. Contemporary Chemical Industry, 2022, 51(8): 1822-1825, 1875. | |
25 | 高飞, 王鹏, 单亚飞. 采空区遗煤吸附电厂烟气中CO2影响因素研究[J]. 煤炭科学技术: 1-10[2023-03-30]. . |
GAO Fei, WANG Peng, SHAN Yafei. Study on influence factors of CO2 in flue gas of coal seam storage power plant in goaf area[J]. Coal Science and Technology: 1-10[2023-03-30]. . | |
26 | 刘清涛. PEI改性生物炭的制备及对CO2吸附性能的评价[J]. 环境科学学报, 2021, 41(3): 932-939. |
LIU Qingtao. Preparation of PEI-modified biochar and evaluation of its CO2 adsorption performance[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 932-939. | |
27 | 张涛, 王彬彬, 李瑶. 基于玉米秸秆的氮掺杂多孔碳制备及其对CO2吸附和CO2/N2分离性能研究[J]. 河南理工大学学报(自然科学版), 2022, 41(6): 174-180. |
ZHANG Tao, WANG Binbin, LI Yao. Preparation of stalk-based nitrogen-doped porous carbon and its CO2 adsorption and CO2/N2 separation properties[J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(6): 174-180. | |
28 | FU Kun, LIU Chenxu, WANG Lemeng, et al. Performance and mechanism of CO2 absorption in 2-ethylhexan-1-amine + glyme non-aqueous solutions[J]. Energy, 2021, 220: 119735. |
29 | ALGHYAMAH Abdulaziz A, ELNOUR A, SHAIKH H, et al. Biochar/polypropylene composites: a study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability[J]. Journal of King Saud University-Science, 2021, 33(4): 101409. |
30 | RAGANATI Federica, ALFE Michela, GARGIULO Valentina, et al. Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent[J]. Chemical Engineering Journal, 2019, 372: 526-535. |
31 | ZHANG Xueyang, GAO Bin, ZHENG Yulin, et al. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms[J]. Bioresource Technology, 2017, 245: 606-614. |
[1] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[5] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[6] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[7] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[8] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[9] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[10] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[11] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[12] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[13] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[14] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[15] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |