Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 344-355.DOI: 10.16085/j.issn.1000-6613.2023-0683
• Materials science and technology • Previous Articles Next Articles
HU Xi(), WANG Mingshan(), LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing
Received:
2023-04-25
Revised:
2023-07-07
Online:
2023-11-30
Published:
2023-10-25
Contact:
WANG Mingshan
胡喜(), 王明珊(), 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星
通讯作者:
王明珊
作者简介:
胡喜(1998—),男,硕士研究生,研究方向为钠离子电池。E-mail:huxi20221119@163.com。
基金资助:
CLC Number:
HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355.
胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0683
TMCs | 样品 | 电压窗口 | 电解液 | 储钠性能 | 文献 |
---|---|---|---|---|---|
WS2 | WS2/C-II | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5% FEC | 6.5A/g,循环3000次,378mAh/g | [ |
WSe2 | WSe2/CS | 0.01~3V | 1mol/L NaPF6溶于PC和10% FEC | 1A/g,循环1200次,130mAh/g | [ |
WTe2 | WTe2 NRs | 0.01~3V | 1mol/L NaClO4溶于EC/DMC和5% FEC | 0.1A/g,循环100次,221mAh/g | [ |
MoS2 | Nb2CT x @MoS2@C | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5% FEC | 1A/g,循环2000次,403mAh/g | [ |
MoSe2 | BH-MoSe2@CNBs | 0.01~3V | 1mol/L NaPF6溶于DME | 10A/g,循环1300 次,347mAh/g | [ |
MoTe2 | 2D-MoTe2@3DPCN | 0.01~3V | 1mol/L NaClO4溶于EC/DMC和5% FEC | 20A/g,循环3000次,158mAh/g | [ |
VS2 | Hierarchical VS2 spheres | 0.3~3V | 1mol/L NaSO3CF3溶于DGM | 2A/g,循环1000次,565mAh/g | [ |
V5S8 | vertical-V5S8@rGO | 0.01~3V | 1mol/L NaCF3SO3溶于TEGDME | 5A/g,循环300次,422mAh/g | [ |
VSe2 | VSe2/NCNFs | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5%FEC凝胶 | 5A/g,循环10000次,207mAh/g | [ |
TiS2 | TiS2 | 0.3~3V | 1mol/L NaPF6溶于DME | 20A/g,循环9000 次,740mAh/g | [ |
TiSe2 | TiSe2-Cl | 0.1~3V | 1mol/L NaPF6溶于DGM | 2A/g,循环100次,351mAh/g | [ |
NbS2 | ce-NbS2 | 0.01~3V | 1mol/L NaPF6溶于EC/DMC | 0.5A/g,循环100次,157mAh/g | [ |
NbSe2 | NbSe2 | 0.01~3V | 1mol/L NaClO4溶于EC/DEC | 0.1A/g,循环100次,98mAh/g | [ |
TMCs | 样品 | 电压窗口 | 电解液 | 储钠性能 | 文献 |
---|---|---|---|---|---|
WS2 | WS2/C-II | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5% FEC | 6.5A/g,循环3000次,378mAh/g | [ |
WSe2 | WSe2/CS | 0.01~3V | 1mol/L NaPF6溶于PC和10% FEC | 1A/g,循环1200次,130mAh/g | [ |
WTe2 | WTe2 NRs | 0.01~3V | 1mol/L NaClO4溶于EC/DMC和5% FEC | 0.1A/g,循环100次,221mAh/g | [ |
MoS2 | Nb2CT x @MoS2@C | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5% FEC | 1A/g,循环2000次,403mAh/g | [ |
MoSe2 | BH-MoSe2@CNBs | 0.01~3V | 1mol/L NaPF6溶于DME | 10A/g,循环1300 次,347mAh/g | [ |
MoTe2 | 2D-MoTe2@3DPCN | 0.01~3V | 1mol/L NaClO4溶于EC/DMC和5% FEC | 20A/g,循环3000次,158mAh/g | [ |
VS2 | Hierarchical VS2 spheres | 0.3~3V | 1mol/L NaSO3CF3溶于DGM | 2A/g,循环1000次,565mAh/g | [ |
V5S8 | vertical-V5S8@rGO | 0.01~3V | 1mol/L NaCF3SO3溶于TEGDME | 5A/g,循环300次,422mAh/g | [ |
VSe2 | VSe2/NCNFs | 0.01~3V | 1mol/L NaClO4溶于EC/DEC和5%FEC凝胶 | 5A/g,循环10000次,207mAh/g | [ |
TiS2 | TiS2 | 0.3~3V | 1mol/L NaPF6溶于DME | 20A/g,循环9000 次,740mAh/g | [ |
TiSe2 | TiSe2-Cl | 0.1~3V | 1mol/L NaPF6溶于DGM | 2A/g,循环100次,351mAh/g | [ |
NbS2 | ce-NbS2 | 0.01~3V | 1mol/L NaPF6溶于EC/DMC | 0.5A/g,循环100次,157mAh/g | [ |
NbSe2 | NbSe2 | 0.01~3V | 1mol/L NaClO4溶于EC/DEC | 0.1A/g,循环100次,98mAh/g | [ |
1 | DUFFNER Fabian, KRONEMEYER Niklas, Jens TÜBKE, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6(2): 123-134. |
2 | PARK Y U, SEO D H, KWON H S, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): 13870-13878. |
3 | ZHAO Chenglong, LIU Lilu, QI Xingguo, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703012. |
4 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
5 | LIU Y, MERINOV B V, GODDARD W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. |
6 | NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
7 | QI Yuruo, LU Yaxiang, DING Feixiang, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(13): 4361-4365. |
8 | NAM D H, HONG K S, LIM S J, et al. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(35): 20086-20093. |
9 | ZHANG Ning, HAN Xiaopeng, LIU Yongchang, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): 1401123. |
10 | FANG Yongjin, LUAN Deyan, CHEN Ye, et al. Rationally designed three-layered Cu2S@Carbon@MoS2 hierarchical nanoboxes for efficient sodium storage[J]. Angewandte Chemie International Edition, 2020, 59(18): 7178-7183. |
11 | ZHAO Lingfei, HU Zhe, LAI Weihong, et al. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704. |
12 | HOU Hongshuai, QIU Xiaoqing, WEI Weifeng, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. |
13 | FANG Shan, BRESSER Dominic, PASSERINI Stefano. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902485. |
14 | SU Heng, JAFFER Saddique, YU Haijun. Transition metal oxides for sodium-ion batteries[J]. Energy Storage Materials, 2016, 5: 116-131. |
15 | LAO Mengmeng, ZHANG Yu, LUO Wenbin, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622. |
16 | Zeeshan ALI, ZHANG Teng, ASIF Muhammad, et al. Transition metal chalcogenide anodes for sodium storage[J]. Materials Today, 2020, 35: 131-167. |
17 | WU Junxiong, MUHAMMAD Ihsan-Ul-Haq, CIUCCI Francesco, et al. Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries[J]. Energy Storage Materials, 2021, 34: 582-628. |
18 | ZHANG Yingxi, ZHANG Liao, Tu’an LYU, et al. Two-dimensional transition metal chalcogenides for alkali metal ions storage[J]. ChemSusChem, 2020, 13(6): 1114-1154. |
19 | HAN Meisheng, MU Yongbiao, CAI Yuanyuan, et al. Atomic-interface strategy and N, O co-doping enable WS2 electrodes with ultrafast ion transport rate in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(38): 20283-20293. |
20 | ZHANG Ge, Xuewu OU, YANG Jinghai, et al. Molecular coupling and self-assembly strategy toward WSe2/carbon micro-nano hierarchical structure for elevated sodium-ion storage[J]. Small Methods, 2021, 5(8): 2100374. |
21 | HONG Meiling, LI Jie, ZHANG Wenfeng, et al. Semimetallic 1T’ WTe2 nanorods as anode material for the sodium ion battery[J]. Energy & Fuels, 2018, 32(5): 6371-6377. |
22 | YUAN Zeyu, WANG Lili, LI Dongdong, et al. Carbon-reinforced Nb2CT x MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries[J]. ACS Nano, 2021, 15(4): 7439-7450. |
23 | GUO Jia, YANG Jun, GUAN Jinpeng, et al. Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries[J]. Chemical Engineering Journal, 2022, 450: 138007. |
24 | LIANG Ming, MA Lishi, CHEN Bochao, et al. Two birds with one stone: A NaCl-assisted strategy toward MoTe2 nanosheets nanoconfined in 3D porous carbon network for sodium-ion battery anode[J]. Energy Storage Materials, 2022, 47: 591-601. |
25 | WANG Jianbiao, LUO Ningjing, WU Junxiu, et al. Hierarchical spheres constructed by ultrathin VS2 nanosheets for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3691-3696. |
26 | TANG Linbo, LI Peiyao, CUI Rude, et al. Adjusting crystal orientation to promote sodium-ion transport in V5S8 @Graphene anode materials for high-performance sodium-ion batteries[J]. Small Methods, 2023, 7(2): 2201387. |
27 | WU Yuanke, ZHONG Wei, TANG Wenwen, et al. Flexible electrode constructed by encapsulating ultrafine VSe2 in carbon fiber for quasi-solid-state sodium ion batteries[J]. Journal of Power Sources, 2020, 470: 228438. |
28 | TAO Hongwei, ZHOU Min, WANG Ruxing, et al. TiS2 as an advanced conversion electrode for sodium-ion batteries with ultra-high capacity and long-cycle life[J]. Advanced Science, 2018, 5(11): 1801021. |
29 | XU Enze, ZHANG Jiamin, LIU Yishao, et al. Electron oriented injection TiSe2-C laminated heterojunctions derived from terminal functionalized MXene for high-rate sodium ion storage[J]. Journal of Materials Chemistry A, 2021, 9(48): 27684-27691. |
30 | Xing OU, XIONG Xunhui, ZHENG Fenghua, et al. In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries[J]. Journal of Power Sources, 2016, 325: 410-416. |
31 | XU Beibei, MA Xiao, TIAN Jianliya, et al. Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries[J]. Ionics, 2019, 25(9): 4171-4177. |
32 | PUMERA Martin, SOFER Zdeněk, AMBROSI Adriano. Layered transition metal dichalcogenides for electrochemical energy generation and storage[J]. Journal of Materials Chemistry A, 2014, 2(24): 8981-8987. |
33 | JIA Pan, WEN Qi, LIU Dan, et al. Highly efficient ionic photocurrent generation through WS2-based 2D nanofluidic channels[J]. Small, 2019, 15(50): 1905355. |
34 | YANG Zhengchun, ZHANG Honghao, MA Bo, et al. Facile synthesis of reduced graphene oxide/tungsten disulfide/tungsten oxide nanohybrids for high performance supercapacitor with excellent rate capability[J]. Applied Surface Science, 2019, 463: 150-158. |
35 | YIN Wenxu, HE Dong, BAI Xue, et al. Synthesis of tungsten disulfide quantum dots for high-performance supercapacitor electrodes[J]. Journal of Alloys and Compounds, 2019, 786: 764-769. |
36 | YUAN L, CHUNG T F, KUC A, et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures[J]. Science Advances, 2018, 4(2): e1700324. |
37 | JIANG Anning, ZHANG Baohua, LI Zhonghao, et al. Vanadium-doped WS2 nanosheets grown on carbon cloth as a highly efficient electrocatalyst for the hydrogen evolution reaction [J]. Chemistry An Asian Journal, 2018, 13(11): 1438-1446. |
38 | RATHA S, ROUT C S. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11427-11433. |
39 | DEBELA T T, LIM Y R, SEO H W, et al. Two-dimensional WS2@Nitrogen-doped graphite for high-performance lithium ion batteries: Experiments and molecular dynamics simulations[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 37928-37936. |
40 | CHIA X, ALEX Y S, ADRIANO A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides[J]. Chemical Reviews, 2015, 115(21): 11941-11966. |
41 | SINGH A, SHIRODKAR S N, WAGHMARE U V. 1H and 1T polymorphs, structural transitions and anomalous properties of (Mo, W)(S, Se)2 monolayers: First-principles analysis[J]. 2D Materials, 2015, 2(3): 035013. |
42 | LUKOWSKI M A, DANIEL A S, ENGLISH C R, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science, 2014, 7(8): 2608-2613. |
43 | BENOIT Mahler, VERONIKA Hoepfner, LIAO Kristine, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2014, 136(40): 14121-14127. |
44 | DING Wei, HU Lin, DAI Jianming, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields[J]. ACS Nano, 2019, 13(2): 1694-1702. |
45 | ENYASHIN A N, YADGAROV L, HOUBEN L, et al. New route for stabilization of 1T-WS2 and MoS2 phases[J]. The Journal of Physical Chemistry C, 2011, 115(50): 24586-24591. |
46 | SU Dawei, DOU Shixue, WANG Guoxiu. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances[J]. Chemical Communications, 2014, 50(32): 4192-4195. |
47 | CHOI S H, KANG Y C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres[J]. Nanoscale, 2015, 7(9): 3965-3970. |
48 | ZHOU Jingwen, QIN Jian, GUO Lichao, et al. Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application as sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2016, 4(44): 17370-17380. |
49 | TAO Huachao, LI Jing, LI Jinhang, et al. Metallic phase W0.9Mo0.1S2 for high-performance anode of sodium ion batteries through suppressing the dissolution of polysulfides[J]. Journal of Energy Chemistry, 2022, 66: 356-365. |
50 | HU Zhe, LIU Qiannan, CHOU Shulei, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700606. |
51 | TAN Huiteng, FENG Yuezhan, RUI Xianhong, et al. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries[J]. Small Methods, 2020, 4(1): 1900563. |
52 | YANG Mei, CHANG Xiaoqing, WANG Liuqi, et al. Interface modulation of metal sulfide anodes for long-cycle-life sodium-ion batteries[J]. Advanced Materials, 2023, 35(13): 2208705. |
53 | MAIER J. Nanoionics: Ion transport and electrochemical storage in confined systems[J]. Nature Materials, 2005, 4(11): 805-815. |
54 | ZHANG Kai, HAN Xiaopeng, HU Zhe, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2015, 44(3): 699-728. |
55 | WANG Jianbiao, YU Ling, ZHOU Ziwang, et al. Template-free synthesis of metallic WS2 hollow microspheres as an anode for the sodium-ion battery[J]. Journal of Colloid and Interface Science, 2019, 557: 722-728. |
56 | LIU Yongchang, ZHANG Ning, KANG Hongyan, et al. WS2 Nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry: A European Journal, 2015, 21(33): 11878-11884. |
57 | HU Xiang, LIU Yangjie, LI Junwei, et al. Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage[J]. Advanced Functional Materials, 2020, 30(5): 1907677. |
58 | LIU Maocheng, ZHANG Hui, HU Yuxia, et al. Special layer-structured WS2 nanoflakes as high performance sodium ion storage materials[J]. Sustainable Energy & Fuels, 2019, 3(5): 1239-1247. |
59 | MA Yitian, LI Li, QIAN Ji, et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries[J]. Energy Storage Materials, 2021, 39: 203-224. |
60 | XU Shusheng, GAO Xiaoming, HUA Yong, et al. Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity[J]. Energy Storage Materials, 2020, 26: 534-542. |
61 | BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946. |
62 | BICCAI Sonia, BARWICH Sebastian, BOLAND Daniel, et al. Exfoliation of 2D materials by high shear mixing[J]. 2D Materials, 2018, 6(1): 015008. |
63 | ZHAO Gang, WU Yongzhong, SHAO Yongliang, et al. Large-quantity and continuous preparation of two-dimensional nanosheets[J]. Nanoscale, 2016, 8(10): 5407-5411. |
64 | VOIRY Damien, YAMAGUCHI Hisato, LI Junwen, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials, 2013, 12(9): 850-855. |
65 | DING Chunxia, HUANG Ting, TAO Yaping, et al. Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors[J]. Journal of Materials Chemistry A, 2018, 6(42): 21010-21017. |
66 | WANG Ye, KONG Dezhi, SHI Wenhui, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1601057. |
67 | LUO Xiaomin, CAO Liyun, HUANG Jianfeng, et al. Exposing WS2 nanosheets edge by supports carbon structure: Guiding Na+ intercalation along (002) plane for enhanced reaction kinetics and stability[J]. Chemical Engineering Journal, 2021, 411: 128554. |
68 | CHEN Weihua, QI Shihan, YU Mingming, et al. Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries[J]. Electrochimica Acta, 2017, 230: 1-9. |
69 | LUO Xiaomin, HUANG Jianfeng, HUANG Yixuan, et al. Self-templated induced carbon-supported hollow WS2 composite structure for high-performance sodium storage[J]. Journal of Materials Chemistry A, 2021, 9(37): 21366-21378. |
70 | MO Lulu, GAO Mingyu, ZHOU Gangyong, et al. Low-crystallinity tungsten disulfide construction by in situ confinement effect enables ultrastable sodium-ion storage[J]. Journal of Alloys and Compounds, 2022, 900: 163518. |
71 | ZHANG Shengqiang, SUN Lili, YU Le, et al. Core-shell CoSe2/WSe2 Heterostructures@Carbon in porous carbon nanosheets as advanced anode for sodium ion batteries[J]. Small, 2021, 17(49): 2103005. |
72 | WANG Shijian, ZHAO Sai, GUO Xin, et al. 2D material-based heterostructures for rechargeable batteries[J]. Advanced Energy Materials, 2021, 12(4), 2100864. |
73 | Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
74 | DUAN Mingtao, MENG Yanshuang, XIAO Mingjun, et al. Facile synthesis of WS2/Ni3S2 encapsulated in N-doped carbon hybrid electrode with high rate performance as anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115681. |
75 | RAO Yu, WANG Jing, LIANG Penghua, et al. Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for high-performance Li/Na storage[J]. Chemical Engineering Journal, 2022, 443: 136080. |
76 | WANG Jiajia, YUE Xiyan, XIE Zhengkun, et al. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries[J]. Energy Storage Materials, 2021, 41: 404-426. |
77 | LI Yu, QIAN Ji, ZHANG Minghao, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Advanced Materials, 2020, 32(47): e2005802. |
78 | ZHANG Xiankun, GAO Li, YU Huihui, et al. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides[J]. Accounts of Materials Research, 2021, 2(8): 655-668. |
79 | LUO Xiaomin, HUANG Jianfeng, LI Jiayin, et al. Controlled WS2 crystallinity effectively dominating sodium storage performance[J]. Journal of Energy Chemistry, 2020, 51: 143-153. |
80 | ZHU Qing, CHEN Wenzhou, CHENG Hua, et al. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies[J]. ChemCatChem, 2019, 11(11): 2667-2675. |
81 | FEI Hao, GUO Ting, XIN Yue, et al. Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3 [J]. Applied Catalysis B: Environmental, 2022, 300: 120733. |
82 | LEI Hongyu, WANG Hui, CHENG Bingxue, et al. Anion-vacancy modified WSSe nanosheets on 3D cross-networked porous carbon skeleton for non-aqueous sodium-based dual-ion storage[J]. Small, 2023, 19(10): 2206340. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[8] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[14] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[15] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |