Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 328-343.DOI: 10.16085/j.issn.1000-6613.2023-0627

• Materials science and technology • Previous Articles     Next Articles

Rubber-concrete interface modification method and performance enhancement path

WANG Jiaqing1(), SONG Guangwei1, LI Qiang1(), GUO Shuaicheng2, DAI Qingli3   

  1. 1.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
    2.School of Civil Engineering, Hunan University, Changsha 410012, Hunan, China
    3.School of Civil and Environmental Engineering, Michigan Technological University, Houghton 49931, Michigan, USA
  • Received:2023-04-18 Revised:2023-05-29 Online:2023-11-30 Published:2023-10-25
  • Contact: LI Qiang

橡胶混凝土界面改性方法及性能提升路径

王家庆1(), 宋广伟1, 李强1(), 郭帅成2, DAI Qingli3   

  1. 1.南京林业大学土木工程学院,江苏 南京 210037
    2.湖南大学土木工程学院,湖南 长沙 410012
    3.美国密歇根理工大学土木与环境工程学院,霍顿 密歇根 49931
  • 通讯作者: 李强
  • 作者简介:王家庆(1994—),男,博士,副教授,主要从事可持续交通基础设施材料与结构的研究。E-mail: jiaqingw@njfu.edu.cn
  • 基金资助:
    国家自然科学基金(52108408);江苏省基础研究计划自然科学基金(BK20210617);长沙理工大学道路结构与材料交通行业重点实验室开放基金(kjf210303)

Abstract:

The recycling of waste tires and their use as cement concrete aggregate can effectively reduce the environmental hazards and the exploitation of natural resources. To address the problem of weak interfacial properties between rubber aggregate and cement stone, more than ten kinds of interfacial modification methods were analyzed, and the influence of different physical and chemical modification methods on the interface performance, mechanical properties, and durability of rubber concrete was summarized. Through the fiber toughening path to further improve the performance of rubber concrete materials, the effect of steel fiber, basalt fiber, polypropylene fiber and polyvinyl alcohol fiber and other commonly used engineering fiber materials on rubber concrete mechanical properties and anti-cracking characteristics was analyzed. The research found that the interface modification can significantly improve the fragile interface of rubber-cement stone and enhance the interfacial bonding performance. The introduction of fibers can effectively improve the anti-cracking characteristics of rubber concrete materials, among which the mechanical strength of steel fiber composite rubber concrete material was significantly improved. The modified rubber aggregate and fiber composite technology can play a “toughening, anti-cracking” synergistic enhancement of cement concrete materials. The existing interface modification technology still had more disadvantages. The problems of environmental secondary pollution and low efficiency of modification needed to be solved by further optimization of the modification technology. The toughening and anti-cracking characteristics of fiber composite rubber concrete materials still should be explored in more depth, and the research on the synergistic mechanism of the two would clarify the performance advantages of fiber composite rubber concrete materials, which can provide an effective scientific basis for practical engineering applications and further expand the“high value”utilization of waste tire solid waste in cement concrete materials. This study would further expand the scale of the utilization of waste tire solids in cement concrete materials.

Key words: solid waste resources, recycled waste tire rubber aggregates, cement concrete, interface modification, fiber reinforcement, mechanical properties, durability

摘要:

废旧轮胎固废作为“黑色污染”给我国生态环境带来巨大压力,将废轮胎回收处理并用作水泥混凝土集料可有效降低环境危害并减少对天然资源的开采;针对橡胶集料与水泥石之间界面性能薄弱的难题,对十余种界面改性方法进行分析,总结不同物理、化学改性方法对界面性能及橡胶混凝土力学性能、耐久性的影响规律。通过纤维增韧路径进一步提升橡胶混凝土材料性能,分析钢纤维、玄武岩纤维、聚丙烯纤维和聚乙烯醇纤维等工程常用纤维材料对橡胶混凝土力学性能及抗裂特性的提升效果;研究发现,界面改性能显著改善橡胶-水泥石脆弱界面,提升界面黏结性能。引入纤维可有效提升橡胶混凝土材料的抗裂特性,其中钢纤维复合橡胶混凝土材料力学强度明显提高,改性橡胶集料和纤维复合技术可起到对水泥混凝土材料的“增韧、抗裂”协同提升作用;现有界面改性技术仍存在较多缺点,其对环境的二次污染和改性效率低的问题有待通过对改性技术的进一步优化而解决。纤维复合橡胶混凝土材料的增韧抗裂特性仍有待更深入的探究,针对两者的协同作用机理的研究将阐明纤维复合橡胶混凝土材料的性能优势,可为实际工程应用提供有效的科学依据,进一步扩大废轮胎固废在水泥混凝土材料中的“高值化”利用规模。

关键词: 固废资源, 废轮胎橡胶集料, 水泥混凝土, 界面改性, 纤维增强, 力学性能, 耐久性

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd