Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2047-2057.DOI: 10.16085/j.issn.1000-6613.2022-1012
• Resources and environmental engineering • Previous Articles Next Articles
LI Wenxiu1(), YANG Yuhang1, HUANG Yan2, WANG Tao1(), WANG Lei1, FANG Mengxiang1
Received:
2022-05-31
Revised:
2022-09-14
Online:
2023-05-08
Published:
2023-04-25
Contact:
WANG Tao
李文秀1(), 杨宇航1, 黄艳2, 王涛1(), 王镭1, 方梦祥1
通讯作者:
王涛
作者简介:
李文秀(1988—),男,博士研究生,研究方向为二氧化碳矿化利用技术。E-mail:wenxiu.li@zju.edu.cn。
基金资助:
CLC Number:
LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057.
李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1012
合成方法 | 条件参数 | 碳酸钙产品 | 参考文献 |
---|---|---|---|
棕榈酸作模板剂 | 25℃,CO2 100mL/min | 立方形单颗粒,无表面活性剂100nm;1.5%(质量分数)棕榈酸20~4nm;2.5%(质量分数)棕榈酸500~800nm | [ |
超声波碳酸化 | 30℃,CO2 45L/h,Ca(OH)2 20mL/min | 菱面体方解石,224nm | [ |
微孔分散法 | 5℃/25℃,CO2 100mL/min,油酸作为表面活性剂 | 立方方解石单晶40~60nm,油酸作为表面活性剂时直径减小到30~40nm | [ |
超重力反应沉淀法 | 工业生产条件 | 方解石和球霰石碳酸钙,粒径80nm | [ |
连续喷雾法 | CO2 8%,60%饱和度的Ca(OH)2 | 纺锤状碳酸钙晶体,1~3µm | [ |
连续鼓泡搅拌法 | CO2 452.30mL/min,Ca(OH)2 2mol/L | 方解石晶体,0.1~0.5µm | [ |
合成方法 | 条件参数 | 碳酸钙产品 | 参考文献 |
---|---|---|---|
棕榈酸作模板剂 | 25℃,CO2 100mL/min | 立方形单颗粒,无表面活性剂100nm;1.5%(质量分数)棕榈酸20~4nm;2.5%(质量分数)棕榈酸500~800nm | [ |
超声波碳酸化 | 30℃,CO2 45L/h,Ca(OH)2 20mL/min | 菱面体方解石,224nm | [ |
微孔分散法 | 5℃/25℃,CO2 100mL/min,油酸作为表面活性剂 | 立方方解石单晶40~60nm,油酸作为表面活性剂时直径减小到30~40nm | [ |
超重力反应沉淀法 | 工业生产条件 | 方解石和球霰石碳酸钙,粒径80nm | [ |
连续喷雾法 | CO2 8%,60%饱和度的Ca(OH)2 | 纺锤状碳酸钙晶体,1~3µm | [ |
连续鼓泡搅拌法 | CO2 452.30mL/min,Ca(OH)2 2mol/L | 方解石晶体,0.1~0.5µm | [ |
原料 | CaO | MgO | SiO2 | Fe2O3 | Al2O3 | SO3 | 参考文献 |
---|---|---|---|---|---|---|---|
钢渣 | 30~60 | 5~20 | 10~45 | 3~9 | 1~18 | <1 | [ |
高炉渣 | 30~50 | 5~15 | 25~45 | 10~30 | 0~10 | <1 | |
电石渣 | 80~90 | 0.1~1.5 | 1~20 | 0.2~1.5 | 1~3 | <1 | |
废弃石膏 | 30~45 | <1 | 0.1~6.5 | <1 | <1 | 40~45 |
原料 | CaO | MgO | SiO2 | Fe2O3 | Al2O3 | SO3 | 参考文献 |
---|---|---|---|---|---|---|---|
钢渣 | 30~60 | 5~20 | 10~45 | 3~9 | 1~18 | <1 | [ |
高炉渣 | 30~50 | 5~15 | 25~45 | 10~30 | 0~10 | <1 | |
电石渣 | 80~90 | 0.1~1.5 | 1~20 | 0.2~1.5 | 1~3 | <1 | |
废弃石膏 | 30~45 | <1 | 0.1~6.5 | <1 | <1 | 40~45 |
1 | 黄浩, 王涛, 方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019, 38(10): 4363-4373. |
HUANG Hao, WANG Tao, FANG Mengxiang. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. | |
2 | Commission European. 2050 Long-term Strategy [EB/OL]. [2020-04-15]. |
3 | 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. |
ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80. | |
4 | XIE Heping, TANG Liang, WANG Yufei, et al. Feedstocks study on CO2 mineralization technology[J]. Environmental Earth Sciences, 2016, 75(7): 1-9. |
5 | WANG Bo, PAN Zihe, DU Zhiping, et al. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction[J]. Journal of Hazardous Materials, 2019, 369: 236-243. |
6 | 王宇轩, 徐颖, 王东平, 等. 球霰石的性质及其应用进展[J]. 安徽理工大学学报(自然科学版), 2017, 37(2): 76-80. |
WANG Yuxuan, XU Ying, WANG Dongping, et al. Properties and applications of vaterite[J]. Journal of Anhui University of Science and Technology (Natural Science), 2017, 37(2): 76-80. | |
7 | JIMOH Onimisi A, ARIFFIN Kamar Shah, HUSSIN Hashim Bin, et al. Synthesis of precipitated calcium carbonate: a review[J]. Carbonates and Evaporites, 2018, 33(2): 331-346. |
8 | CHEN Peng, LIU Yang, DI Mingwei. The effect of nano-filler on the damping properties of polyacrylic damping paint[J]. Advanced Materials Research, 2011, 183/184/185: 2154-2157. |
9 | TRUSHINA Daria B, BUKREEVA Tatiana V, KOVALCHUK Mikhail V, et al. CaCO3 vaterite microparticles for biomedical and personal care applications[J]. Materials Science and Engineering C, 2014, 45: 644-658. |
10 | WANG F, DREISINGER D B, JARVIS M, et al. The technology of CO2 sequestration by mineral carbonation: current status and future prospects[J]. Canadian Metallurgical Quarterly, 2018, 57(1): 46-58. |
11 | IBRAHIM Mohamed H, EL-NAAS Muftah H, ZEVENHOVEN Ron, et al. Enhanced CO2 capture through reaction with steel-making dust in high salinity water[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102819. |
12 | BARHOUM Ahmed, VAN ASSCHE Guy, MAKHLOUF Abdel Salam Hamdy, et al. A green, simple chemical route for the synthesis of pure nanocalcite crystals[J]. Crystal Growth and Design, 2015, 15(2): 573-580. |
13 | ZHOU Jun, CAO Xun, YONG Xiaoyu, et al. Effects of various factors on biogas purification and nano-CaCO3 synthesis in a membrane reactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1702-1706. |
14 | ERDOGAN Necmettin, EKEN Haci Ali. Precipitated calcium carbonate production, synthesis and properties[J]. Physicochemical Problems of Mineral Processing, 2016, 53: 57-68. |
15 | KEZUKA Yuki, KUMA Yoshiki, NAKAI Shinsuke, et al. Calcium carbonate chain-like nanoparticles: Synthesis, structural characterization, and dewaterability[J]. Powder Technology, 2018, 335: 195-203. |
16 | ULKERYILDIZ Eda, KILIC Sevgi, OZDEMIR Ekrem. Rice-like hollow nano-CaCO3 synthesis[J]. Journal of Crystal Growth, 2016, 450: 174-180. |
17 | ULKERYILDIZ Eda, KILIC Sevgi, OZDEMIR Ekrem. Nano-CaCO3 synthesis by jet flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512: 34-40. |
18 | ULKERYILDIZ Eda, KILIC Sevgi, OZDEMIR Ekrem. Nano-CaCO3 synthesis by jet flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512: 34-40. |
19 | JIANG Jiuxin, ZHANG Ying, YANG Xi, et al. Assemblage of nano-calcium carbonate particles on palmitic acid template[J]. Advanced Powder Technology, 2014, 25(2): 615-620. |
20 | SHIRSATH S R, SONAWANE S H, SAINI D R, et al. Continuous precipitation of calcium carbonate using sonochemical reactor[J]. Ultrasonics Sonochemistry, 2015, 24: 132-139. |
21 | JIANG Jiuxin, LIU Jie, LIU Chang, et al. Roles of oleic acid during micropore dispersing preparation of nano-calcium carbonate particles[J]. Applied Surface Science, 2011, 257(16): 7047-7053. |
22 | SHAN Dan, ZHU Mingjuan, HAN En, et al. Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor[J]. Biosensors and Bioelectronics, 2007, 23(5): 648-654. |
23 | MA Liang, YANG Tingyu, WU Yu, et al. CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach[J]. Korean Journal of Chemical Engineering, 2019, 36(9): 1432-1440. |
24 | JIMOH Onimisi A, MAHMED Norsuria, OKOYE P U, et al. Utilization of milk of lime (MOL) originated from carbide lime waste and operating parameters optimization study for potential precipitated calcium carbonate (PCC) production[J]. Environmental Earth Sciences, 2016, 75(18): 1-7. |
25 | SHA Feng, ZHU Ning, BAI Yijia, et al. Controllable synthesis of various CaCO3 morphologies based on a CCUS idea[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(6): 3032-3044. |
26 | KARTHIKA S, RADHAKRISHNAN T, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16: 6663-6681. |
27 | WANG Bo, PAN Zihe, CHENG Huaigang, et al. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring[J]. Journal of Crystal Growth, 2018, 492: 122-131. |
28 | GONG Yuan, WU Lin, LI Ji, et al. Modeling of multistep Ca2+ transfer in the carbonation system of CO2-NH4OH-CaSO4·2H2O-CaCO3 [J]. Journal of Crystal Growth, 2019, 522: 128-138. |
29 | ZHANG Xiaolei, CHEN Jiaxin, JIANG Jingjing, et al. The potential utilization of slag generated from iron- and steelmaking industries: A review[J]. Environmental Geochemistry and Health, 2020, 42(5): 1321-1334. |
30 | LIU Weizao, TENG Liumei, ROHANI Sohrab, et al. CO2 mineral carbonation using industrial solid wastes: A review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093. |
31 | 赵红涛, 王树民, 刘志江, 等. 磷石膏矿化固定CO2制备高纯高白CaCO3 [J]. 材料导报, 2019, 33(18): 3031-3034, 3042. |
ZHAO Hongtao, WANG Shumin, LIU Zhijiang, et al. Preparation of high-purity and high-white CaCO3 by phosphogypsum mineralization for CO2 capture[J]. Materials Reports, 2019, 33(18): 3031-3034, 3042. | |
32 | 赵立文, 朱干宇, 李少鹏, 等. 电石渣特性及综合利用研究进展[J]. 洁净煤技术, 2021, 27(3): 13-26. |
ZHAO Liwen, ZHU Ganyu, LI Shaopeng, et al. Research progress on characteristics and comprehensive utilization of calcium carbide slag[J]. Clean Coal Technology, 2021, 27(3): 13-26. | |
33 | USGS. Mineral commodity summaries 2020. U.S. Geological Survey[EB/OL]. .[2020-04-15]. |
34 | TEIR Sebastian, KUUSIK Rein, FOGELHOLM Carl Johan, et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2 [J]. International Journal of Mineral Processing, 2007, 85(1/2/3): 1-15. |
35 | ZHAO Qing, LI Jingyu, YOU Kaiwen, et al. Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration[J]. Process Safety and Environmental Protection, 2020, 135: 81-90. |
36 | BAO Weijun, LI Huiquan, YI Zhang. Selective leaching of steelmaking slag for indirect CO2 mineral sequestration[J]. Industrial and Engineering Chemistry Research, 2010, 49(5): 2055-2063. |
37 | OWAIS M, JÄRVINEN M, TASKINEN P, et al. Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2 [J]. Journal of CO2 Utilization, 2019, 31: 1-7. |
38 | TONG Zhibo, MA Guojun, ZHOU Dan, et al. The indirect mineral carbonation of electric arc furnace slag under microwave irradiation[J]. Scientific Reports, 2019, 9(1): 7676. |
39 | PARK Ah-hyung alissa, FAN Liang-shih. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science, 2004, 59: 5241-5247. |
40 | WANG Xiaolong, Mercedes MAROTO-VALER M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. |
41 | WANG Lin, LIU Weizao, HU Jingpeng, et al. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3 [J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 583-592. |
42 | CHIANG Yi wai, SANTOS Rafael M, ELSEN Jan, et al. Towards zero-waste mineral carbon sequestration via two-way valorization of ironmaking slag[J]. Chemical Engineering Journal, 2014, 249: 260-269. |
43 | WANG Yongjing, YE Baofang, HONG Zengchun, et al. Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant[J]. Journal of Cleaner Production, 2020, 253: 119930. |
44 | 吴琦文, 施利毅, 张仲燕. 利用电石渣制备纳米碳酸钙的研究[J]. 上海大学学报(自然科学版), 2002, 8(3): 247-250. |
WU Qiwen, SHI Liyi, ZHANG Zhongyan. Preparation of nanometer calcium carbonate particles by calcium carbide residue[J]. Journal of Shanghai University (Natural Science Edition), 2002, 8(3): 247-250. | |
45 | 刘飞, 袁铭鸿, 曹建新. 利用电石渣制备碳酸钙晶须的初步研究[J]. 贵州大学学报(自然科学版), 2010, 27(2): 126-128, 132. |
LIU Fei, YUAN Minghong, CAO Jianxin. Primary research of calcium carbonate whisker prepared from carbide slag[J]. Journal of Guizhou University (Natural Science Edition), 2010, 27(2): 126-128, 132. | |
46 | 张爱华, 朱敏, 关云山, 等. 氯化铵处理电石渣制备纳米碳酸钙的实验研究[J]. 科学技术与工程, 2013, 13(10): 2880-2883. |
ZHANG Aihua, ZHU Min, GUAN Yunshan, et al. Experimental study on preparation of nanosized calcium carbonate from carbide slag treated by ammonium chloride[J]. Science Technology and Engineering, 2013, 13(10): 2880-2883. | |
47 | 张果龙, 刘跃进, 罗云峰, 等. 电石渣制备立方体晶型纳米碳酸钙研究[J]. 河北化工, 2008(6): 14-16, 49. |
ZHANG Guolong, LIU Yuejin, LUO Yunfeng, et al. Study on preparation cubical mamometer calcium carbonate by calcium carbide residue[J]. Hebei Chemical Engineering and Industry, 2008(6): 14-16, 49. | |
48 | GUO Bo, ZHAO Tianxiang, SHA Feng, et al. Synthesis of vaterite CaCO3 micro-spheres by carbide slag and a novel CO2-storage material[J]. Journal of CO2 Utilization, 2017, 18: 23-29. |
49 | LI Wenxiu, HUANG Yan, WANG Tao, et al. Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralization[J]. Journal of Cleaner Production, 2022, 363: 132463. |
50 | 向兰, 张英才, 张清杰, 等. 一种工业副产石膏选择性固固分离制备高纯石膏的方法: CN109824078B[P]. 2019-03-05. |
XIANG Lan, ZHANG Yingcai, ZHANG Qingjie, et al. A method for preparing high-purity gypsum by selective solid-solid separation of industrial by-product gypsum: CN109824078B[P]. 2019-03-05. | |
51 | PÉREZ-MORENO S M, GÁZQUEZ M J, BOLÍVAR J P. CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments[J]. Chemical Engineering Journal, 2015, 262: 737-746. |
52 | DE BEER M, DOUCET F J, MAREE J P, et al. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste[J]. Waste Management, 2015, 46: 619-627. |
53 | DING Wenjin, CHEN Qiuju, SUN Hongjuan, et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization, 2019, 34: 507-515. |
54 | HOSSEINI T, SELOMULYA C, HAQUE N, et al. Indirect carbonation of Victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28: 6481-6493. |
55 | HE Lanlan, YU Dunxi, Weizhi LYU, et al. A novel method for CO2 sequestration via indirect carbonation of coal fly ash[J]. Industrial & Engineering Chemistry Research, 2013, 52(43): 15138-15145. |
56 | CUI Li, GUO Yanxia, WANG Xuming, et al. Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 590-596. |
57 | WANG Jinyu, HUANG Xiaowei, WANG Liangshi, et al. Kinetics study on the leaching of rare earth and aluminum from FCC catalyst waste slag using hydrochloric acid[J]. Hydrometallurgy, 2017, 171: 312-319. |
58 | TRUSHINA Daria B, BUKREEVA Tatiana V, KOVALCHUK Mikhail V, et al. CaCO3 vaterite microparticles for biomedical and personal care applications[J]. Materials Science and Engineering, 2014, 45: 644-658. |
59 | ZHONG Yanjun, SHI Ting, CHEN Qiuge, et al. Leaching calcium from phosphogypsum desulfurization slag by using ammonium chloride solution: thermodynamics and kinetics study[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 208-215. |
60 | GEBAUER D. How can additives control the early stages of mineralisation[J]. Minerals, 2018, 8: 179. |
61 | SAID Arshe, LAUKKANEN Timo, Mika JÄRVINEN. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag[J]. Applied Energy, 2016, 177: 602-611. |
62 | PARK Sanghyun, Yongtae AHN, LEE Sunjae, et al. Calcium carbonate synthesis from waste concrete for carbon dioxide capture: from laboratory to pilot scale[J]. Journal of Hazardous Materials, 2021, 403: 123862. |
63 | IIZUKA Atsushi, SASAKI Takeshi, HONMA Masato, et al. Pilot-scale operation of a concrete sludge recycling plant and simultaneous production of calcium carbonate[J]. Chemical Engineering Communications, 2017, 204(1): 79-85. |
64 | SANNA A, UIBU M, CARAMANNA G, et al. A review of mineral carbonation technologies to sequester CO2 [J]. Chemical Society Reviews, 2014, 43(23): 8049-8080. |
65 | TEIR Sebastian, KOTIRANTA Tuukka, PAKARINEN Jouko, et al. Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag[J]. Journal of CO2 Utilization, 2016, 14: 37-46. |
66 | MATTILA Hannu Petteri, HUDD Hannes, ZEVENHOVEN Ron. Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag[J]. Journal of Cleaner Production, 2014, 84: 611-618. |
[1] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[2] | DING Wenjin, LIU Zhuoqi, LU Haichen, SUN Hongjuan, PENG Tongjiang. Preparation of high-purity CaCO3 from phosphogypsum for CO2 mineralization in CH3COONa-NH4OH-H2O system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3824-3833. |
[3] | GAO Ningbo, HU Yadi, QUAN Cui. Research progress on thermochemical transformation and biological treatment of food waste [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 507-515. |
[4] | YU Zhengwei, ZHANG Xiaoxia, LEI Jie, LI Ao, WANG Guangying, DING Xiang, LONG Hongming. Comprehensive recovery of cerium and manganese from waste CeO x -MnO x -based SCR denitrification catalysts by reductive acid leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5122-5131. |
[5] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[6] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[7] | CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. |
[8] | HE Minyu, LIU Weizao, LIU Qingcai, QIN Zhifeng. Research progress in CO2 mineral sequestration technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833. |
[9] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[10] | WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502. |
[11] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
[12] | NIE Zimeng, YANG Dian, XIONG Yulu, LI Yingjie, TIAN Senlin, NING Ping. Performance and mechanism of electrolytic manganese slag slurry for flue gas desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1063-1072. |
[13] | YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212. |
[14] | LIU Ancang, CHEN Chuan, CHEN Jianzhong, CHEN Yuzhong, ZHU Chenliang, JIANG Yong, LU Fushen, WANG Shuangxi, ZHONG Ziyi, SONG Yibing. Application of catalytic reaction for CO2 resource utilization and marine antifouling in coastal power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5145-5155. |
[15] | LIU Weizao, HU Jinpeng, LIU Qingcai, LI Chun. Roasting kinetics of ammonium sulfate and calcium titanate [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4624-4630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |