Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1825-1833.DOI: 10.16085/j.issn.1000-6613.2021-0845
• Energy processes and technology • Previous Articles Next Articles
HE Minyu1(), LIU Weizao1(), LIU Qingcai1, QIN Zhifeng2
Received:
2021-04-21
Revised:
2021-06-09
Online:
2022-04-25
Published:
2022-04-23
Contact:
LIU Weizao
通讯作者:
刘维燥
作者简介:
何民宇(1998—),男,硕士研究生,研究方向为工业固废综合利用。E-mail: 基金资助:
CLC Number:
HE Minyu, LIU Weizao, LIU Qingcai, QIN Zhifeng. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833.
何民宇, 刘维燥, 刘清才, 秦治峰. CO2矿物封存技术研究进展[J]. 化工进展, 2022, 41(4): 1825-1833.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0845
1 | OLIVIER J G, PETERS J. Trends in global CO2 and total greenhouse gas emissions: 2019 report[R]. PBL Netherlands Environmental Assessment Agency, 2019. |
2 | IPCC 2014. Climate change 2014: synthesis report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2014. |
3 | GAO Y, GAO X, ZHANG X H. The 2℃ global temperature target and the evolution of the long-term goal of addressing climate change—From the United Nations Framework Convention on Climate Change to the Paris Agreement[J]. Engineering, 2017, 3(2): 272-278. |
4 | LIM M, HAN G C, AHN J W, et al. Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology[J]. International Journal of Environmental Research and Public Health, 2010, 7(1): 203-228. |
5 | MACDOWELL N, FLORIN N, BUCHARD A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669. |
6 | LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: a review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093. |
7 | LACKNER K S, BUTT D P, WENDT C H. Progress on binding CO2 in mineral substrates[J]. Energy Conversion and Management, 1997, 38: S259-S264. |
8 | LACKNER K S, WENDT C H, BUTT D P, et al. Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170. |
9 | O’CONNOR W K, DAHLIN D C, NILSEN D N, et al. Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status[C]// 1st Annual DOE Carbon Sequestration Conference, Washington, D.C., 2001. |
10 | TAI C Y, CHEN W R, SHIH S M. Factors affecting wollastonite carbonation under CO2 supercritical conditions[J]. AIChE Journal, 2006, 52(1): 292-299. |
11 | ZEVENHOVEN R, WIKLUND A, FAGERLUND J, et al. Carbonation of calcium-containing mineral and industrial by-products[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 110-119. |
12 | FARA A ABU, RAYSON M R, BRENT G F, et al. Formation of magnesite and hydromagnesite from direct aqueous carbonation of thermally activated lizardite[J]. Environmental Progress & Sustainable Energy, 2019, 38(3): e13244. |
13 | FARHANG F, OLIVER T K, RAYSON M, et al. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration[J]. Chemical Engineering Journal, 2016, 303: 439-449. |
14 | FABIAN M, SHOPSKA M, PANEVA D, et al. The influence of attrition milling on carbon dioxide sequestration on magnesium-iron silicate[J]. Minerals Engineering, 2010, 23(8): 616-620. |
15 | LI J J, HITCH M. Mechanical activation of magnesium silicates for mineral carbonation, a review[J]. Minerals Engineering, 2018, 128: 69-83. |
16 | HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chemical Engineering Science, 2006, 61(13): 4242-4251. |
17 | GERDEMANN S J, O’CONNOR W K, DAHLIN D C, et al. Ex situ aqueous mineral carbonation[J]. Environmental Science Technology, 2007, 41(7): 2587-2593. |
18 | TEIR S, KUUSIK R, FOGELHOLM C J, et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2 [J]. International Journal of Mineral Processing, 2007, 85(1/2/3): 1-15. |
19 | TEIR S, REVITZER H, ELONEVA S, et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing, 2007, 83(1/2): 36-46. |
20 | TEIR S, ELONEVA S, FOGELHOLM C J, et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Applied Energy, 2009, 86(2): 214-218. |
21 | ARCE FERRUFINO G L A, OKAMOTO S, SANTOS J C DOS, et al. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T[J]. Journal of CO2 Utilization, 2018, 24: 164-173. |
22 | BAO W J, LI H Q, ZHANG Y. Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration[J]. Greenhouse Gases: Science and Technology, 2014, 4(6): 785-799. |
23 | WANG X, MAROTO-VALER M M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts[J]. ChemSusChem, 2011, 4(9): 1291-1300. |
24 | WANG X L, MAROTO-VALER M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. |
25 | FAGERLUND J, NDUAGU E, ROMÃO I, et al. CO2 fixation using magnesium silicate minerals Part 1: Process description and performance[J]. Energy, 2012, 41(1): 184-191. |
26 | NDUAGU E, BJÖRKLÖF T, FAGERLUND J, et al. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization—Part 2: Mg extraction modeling and application to different Mg silicate rocks[J]. Minerals Engineering, 2012, 30: 87-94. |
27 | ZEVENHOVEN R, SLOTTE M, ÅBACKA J, et al. A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step[J]. Energy, 2016, 117: 604-611. |
28 | RAZA W, RAZA N, AGBE H, et al. Multistep sequestration and storage of CO2 to form valuable products using forsterite[J]. Energy, 2018, 155: 865-873. |
29 | ARCE G L A F, SOARES NETO T G, ÁVILA I, et al. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method[J]. Journal of Cleaner Production, 2017, 141: 1324-1336. |
30 | ROMÃO I S, GANDO-FERREIRA L M, ZEVENHOVEN R. Combined extraction of metals and production of Mg(OH)2 for CO2 sequestration from nickel mine ore and overburden[J]. Minerals Engineering, 2013, 53: 167-170. |
31 | HUIJGEN W J J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2005, 39(24): 9676-9682. |
32 | CHANG E E, PAN S Y, CHEN Y H, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. Journal of Hazardous Materials, 2011, 195: 107-114. |
33 | CHANG E E, PAN S Y, CHEN Y H, et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012, 227/228: 97-106. |
34 | PAN S Y, LORENTE LAFUENTE A M, CHIANG P C. Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization[J]. Applied Energy, 2016, 170: 269-277. |
35 | TAMILSELVI DANANJAYAN R R, KANDASAMY P, ANDIMUTHU R. Direct mineral carbonation of coal fly ash for CO2 sequestration[J]. Journal of Cleaner Production, 2016, 112: 4173-4182. |
36 | TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32(4): 528-539. |
37 | ELONEVA S, TEIR S, SALMINEN J, et al. Steel converter slag as a raw material for precipitation of pure calcium carbonate[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7104-7111. |
38 | ELONEVA S, TEIR S, SALMINEN J, et al. Fixation of CO2 by carbonating calcium derived from blast furnace slag[J]. Energy, 2008, 33(9): 1461-1467. |
39 | SUN Y, YAO M S, ZHANG J P, et al. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution[J]. Chemical Engineering Journal, 2011, 173(2): 437-445. |
40 | ELONEVA S, SAID A, FOGELHOLM C J, et al. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate[J]. Applied Energy, 2012, 90(1): 329-334. |
41 | HE L L, YU D X, LYU W, et al. A novel method for CO2 sequestration via indirect carbonation of coal fly ash[J]. Industrial & Engineering Chemistry Research, 2013, 52(43): 15138-15145. |
42 | HOSSEINI T, SELOMULYA C, HAQUE N, et al. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
43 | JO H, PARK S H, JANG Y N, et al. Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions[J]. Chemical Engineering Journal, 2014, 254: 313-323. |
44 | JEON J, KIM M J. CO2 storage and CaCO3 production using seawater and an alkali industrial by-product[J]. Chemical Engineering Journal, 2019, 378: 122180. |
45 | DRI M, SANNA A, MAROTO-VALER M M. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation[J]. Fuel Processing Technology, 2013, 113: 114-122. |
46 | JI L, YU H, YU B, et al. Integrated absorption-mineralisation for energy-efficient CO2 sequestration: reaction mechanism and feasibility of using fly ash as a feedstock[J]. Chemical Engineering Journal, 2018, 352: 151-162. |
47 | JI L, YU H, LI K K, et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration[J]. Applied Energy, 2018, 225: 356-366. |
48 | WANG L, LIU W Z, HU J P, et al. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3 [J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 583-592. |
49 | CHU G R, WANG L, LIU W Z, et al. Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products[J]. Greenhouse Gases: Science and Technology, 2019, 9(1): 52-66. |
50 | ÖZBAY E, ERDEMIR M, DURMUŞ H İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review[J]. Construction and Building Materials, 2016, 105: 423-434. |
51 | USGS. Mineral commodity summaries 2020[R]. U.S. Geological Survey, 2020. |
52 | ULIASZ-BOCHEŃCZYK A, MOKRZYCKI E. CO2 mineral sequestration with the use of ground granulated blast furnace slag[J]. Gospodarka Surowcami Mineralnymi, 2017, 33(1): 111-124. |
53 | REN E Z, TANG S Y, LIU C J, et al. Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions[J]. Greenhouse Gases: Science and Technology, 2020, 10(2): 436-448. |
54 | MUN M, CHO H. Mineral carbonation for carbon sequestration with industrial waste[J]. Energy Procedia, 2013, 37: 6999-7005. |
55 | DE CROM K, CHIANG Y W, GERVEN T VAN, et al. Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis[J]. Chemical Engineering Research and Design, 2015, 104: 180-190. |
56 | LEE S, KIM J W, CHAE S, et al. CO2 sequestration technology through mineral carbonation: an extraction and carbonation of blast slag[J]. Journal of CO2 Utilization, 2016, 16: 336-345. |
57 | BANG J H, LEE S W, JEON C, et al. Leaching of metal ions from blast furnace slag by using aqua regia for CO2 mineralization[J]. Energies, 2016, 9(12): 996. |
58 | HU J P, LIU W Z, WANG L, et al. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant[J]. Journal of Energy Chemistry, 2017, 26(5): 927-935. |
59 | LIU W Z, YIN S, LUO D M, et al. Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag[J]. Journal of Alloys and Compounds, 2019, 774: 1151-1159. |
60 | 李春, 刘维燥, 岳海荣, 等. CO2矿化非碱性矿的离子迁移规律及过程强化基础[J]. 中国基础科学, 2018, 20(4): 49-54. |
LI Chun, LIU Weizao, YUE Hairong, et al. Ion migration rule and process reinforcement basis for the CO2 mineralization of non-alkaline ores[J]. China Basic Science, 2018, 20(4): 49-54. | |
61 | YIN S, ALDAHRI T, ROHANI S, et al. Insights into the roasting kinetics and mechanism of blast furnace slag with ammonium sulfate for CO2 mineralization[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14026-14036. |
62 | DENG C H, LIU W Z, CHU G R, et al. Aqueous carbonation of MgSO4 with (NH4)2CO3 for CO2 sequestration[J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 209-225. |
63 | GENG X, LYU L, LI C, et al. The kinetics of CO2 indirect mineralization of MgSO4 to produce MgCO3· 3H2O[J]. Journal of CO2 Utilization, 2019, 33: 64-71. |
64 | LIU W Z, MENG F Q, CHU G R, et al. Phase diagrams of the MgSO4-Al2(SO4) 3-(NH4) 2SO4-H2O system at 25 and 55℃ and their application in mineral carbonation[J]. Fluid Phase Equilibria, 2018, 473: 226-235. |
65 | GAO J Q, LI C, LIU W Z, et al. Process simulation and energy integration in the mineral carbonation of blast furnace slag[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 157-167. |
66 | HAN Z K, GAO J Q, YUAN X Z, et al. Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis[J]. RSC Advances, 2020, 10(30): 17836-17844. |
67 | REN S, ALDAHRI T, LIU W, et al. CO2 mineral sequestration by using blast furnace slag: from batch to continuous experiments[J]. Energy, 2021, 214: 118975. |
68 | LIU Q, LIU W Z, HU J P, et al. Energy-efficient mineral carbonation of blast furnace slag with high value-added products[J]. Journal of Cleaner Production, 2018, 197: 242-252. |
69 | CHU G R, LI C, LIU W Z, et al. Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process[J]. Energy, 2019, 166: 1314-1322. |
70 | LIU W Z, ALDAHRI T, REN S, et al. Solvent-free synthesis of hydroxycancrinite zeolite microspheres during the carbonation process of blast furnace slag[J]. Journal of Alloys and Compounds, 2020, 847: 156456. |
71 | LIU W Z, ALDAHRI T, XU C B, et al. Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104652. |
[1] | LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. |
[2] | DING Wenjin, LIU Zhuoqi, LU Haichen, SUN Hongjuan, PENG Tongjiang. Preparation of high-purity CaCO3 from phosphogypsum for CO2 mineralization in CH3COONa-NH4OH-H2O system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3824-3833. |
[3] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[4] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
[5] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[6] | ZHENG Peng, LI Weiling, GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538. |
[7] | YANG Yongbin, DONG Yinrui, ZHONG Qiang, LI Qian, WANG Lin, JIANG Tao. Application and research progress of carbonization consolidation of high temperature coal tar pitch binder in formed carbon material [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6419-6429. |
[8] | LIU Weizao, HU Jinpeng, LIU Qingcai, LI Chun. Roasting kinetics of ammonium sulfate and calcium titanate [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4624-4630. |
[9] | WANG Zhonghui, SU Sheng, YIN Zijun, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. |
[10] | Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. |
[11] | ZHOU Hui, ZHENG Jun, HU Dawei, ZHANG Chuanqing, LU Jingjing, GAO Yang. Effect of CO2 erosion on the pore structure of cement-based materials in water soaking and moist environment [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4791-4798. |
[12] | LIU Yangyu, JIA Hongwei, PAN Yongtai, ZHENG Shuilin, SUN Zhiming, LI Mingzhe. Reaction products and kinetic process for the calcination of opoka with ammonium sulfate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4543-4550. |
[13] | SHI Tian, CHEN Jian, DUAN Lunbo, ZHAO Changsui. CO2 capture performance of self-activated Ca/Cu composites prepared by solution combustion synthesis [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3086-3091. |
[14] | TIAN Wanjun, HAN Lei, SHI Zhenglun. Performance study of precipitated nano-silica from acid leaching residue of coal ash by carbonation method [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 984-991. |
[15] | LIU Shouqing, LUO Zhongqiu, HE Sen, ZHOU Xintao, JIA Qingming. Solidification/stabilization of calcium arsenate waste with blast furnace slag and fly ash geopolymer materials [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2660-2666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |