Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1654-1666.DOI: 10.16085/j.issn.1000-6613.2021-2147
• Chemical processes integration and optimization • Previous Articles Next Articles
CHU Genyun1(), FAN Yingjie1, ZHANG Dawei1, GAO Minglin2, MEI Shumei2, YANG Qingchun1,2()
Received:
2021-10-18
Revised:
2021-11-17
Online:
2022-03-28
Published:
2022-03-23
Contact:
YANG Qingchun
储根云1(), 范英杰1, 张大伟1, 高明林2, 梅树美2, 杨庆春1,2()
通讯作者:
杨庆春
作者简介:
储根云(1998—),女,硕士研究生,研究方向为化工过程系统工程。E-mail:基金资助:
CLC Number:
CHU Genyun, FAN Yingjie, ZHANG Dawei, GAO Minglin, MEI Shumei, YANG Qingchun. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666.
储根云, 范英杰, 张大伟, 高明林, 梅树美, 杨庆春. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2147
气化技术 | Texaco | Shell | GSP |
---|---|---|---|
反应床类型 | 气流床 | 气流床 | 气流床 |
气化温度/℃ | 1350~1400 | 1400~1600 | 1400~1600 |
气化压力 /MPa | 2.6~8.5 | 2~4 | 2.5~4.0 |
出口温度/℃ | 约210 | 约170 | 约220 |
煤种 | 烟煤、次烟煤等 | 褐煤、烟煤等 | 褐煤、烟煤等 |
进料方式 | 60%~65%水煤浆 | 150~200目干煤粉 | 250~500目干煤粉 |
湿度/% | <8 | 烟煤<2;褐煤<8 | 烟煤<2;褐煤<8 |
灰熔点/℃ | <1300 | <1500 | <1500 |
灰分/% | <13 | 1~20 | 1~20 |
单炉投煤量 /t·d-1 | 2000 | 2800 | 720 |
气化剂 | 纯氧 | 纯氧+水蒸气 | 纯氧+水蒸气 |
有效气体积 分数/% | 77.5 | 96.6 | 88.8 |
国产化水平 | 基本国产化 | 关键设备需引进 | 关键设备需引进 |
投资 | 低 | 高 | 较高 |
气化技术 | Texaco | Shell | GSP |
---|---|---|---|
反应床类型 | 气流床 | 气流床 | 气流床 |
气化温度/℃ | 1350~1400 | 1400~1600 | 1400~1600 |
气化压力 /MPa | 2.6~8.5 | 2~4 | 2.5~4.0 |
出口温度/℃ | 约210 | 约170 | 约220 |
煤种 | 烟煤、次烟煤等 | 褐煤、烟煤等 | 褐煤、烟煤等 |
进料方式 | 60%~65%水煤浆 | 150~200目干煤粉 | 250~500目干煤粉 |
湿度/% | <8 | 烟煤<2;褐煤<8 | 烟煤<2;褐煤<8 |
灰熔点/℃ | <1300 | <1500 | <1500 |
灰分/% | <13 | 1~20 | 1~20 |
单炉投煤量 /t·d-1 | 2000 | 2800 | 720 |
气化剂 | 纯氧 | 纯氧+水蒸气 | 纯氧+水蒸气 |
有效气体积 分数/% | 77.5 | 96.6 | 88.8 |
国产化水平 | 基本国产化 | 关键设备需引进 | 关键设备需引进 |
投资 | 低 | 高 | 较高 |
工艺 | 煤/t·t EG-1 | 焦炉煤气/kmol·t-1 | 电/kW·t-1 | 碳效率/% | ?效率/% | 总投资/CNY·t-1·a-1 | 总生产成本/CNY·t-1 | 内部收益率/% |
---|---|---|---|---|---|---|---|---|
CtEG | 3.17 | — | 999.07 | 21.23 | 30.68 | 16142 | 5142 | 9.25 |
CtEG-SMR | 1.18 | 40.20 | 765.07 | 44.58 | 34.93 | 13591 | 4693 | 12.85 |
CtEG-DMR | 0.90 | 41.51 | 736.40 | 53.56 | 38.75 | 14147 | 4600 | 13.01 |
CtEG-S&DMR | 0.69 | 48.55 | 655.33 | 60.44 | 39.46 | 12604 | 4377 | 16.45 |
CtEG-TR | 0.87 | 48.88 | 678.13 | 55.51 | 40.80 | 12114 | 4120 | 18.85 |
工艺 | 煤/t·t EG-1 | 焦炉煤气/kmol·t-1 | 电/kW·t-1 | 碳效率/% | ?效率/% | 总投资/CNY·t-1·a-1 | 总生产成本/CNY·t-1 | 内部收益率/% |
---|---|---|---|---|---|---|---|---|
CtEG | 3.17 | — | 999.07 | 21.23 | 30.68 | 16142 | 5142 | 9.25 |
CtEG-SMR | 1.18 | 40.20 | 765.07 | 44.58 | 34.93 | 13591 | 4693 | 12.85 |
CtEG-DMR | 0.90 | 41.51 | 736.40 | 53.56 | 38.75 | 14147 | 4600 | 13.01 |
CtEG-S&DMR | 0.69 | 48.55 | 655.33 | 60.44 | 39.46 | 12604 | 4377 | 16.45 |
CtEG-TR | 0.87 | 48.88 | 678.13 | 55.51 | 40.80 | 12114 | 4120 | 18.85 |
项目 | CtEG | D-SCtEG | S-SCtEG | D+S-SCtEG |
---|---|---|---|---|
原煤/t·t EG-1 | 3.17 | 0.57 | 0.57 | 0.44 |
页岩气/kmol?h-1·t EG-1 | 0 | 1.58 | 1.64 | 2.14 |
总碳输入/kmol·h-1 | 5699.48 | 2034.64 | 2068.02 | 2336.36 |
总?输入/MW | 661.56 | 419.53 | 395.34 | 457.75 |
乙二醇/Mt·a-1 | 0.3 | 0.3 | 0.3 | 0.3 |
碳元素利用效率/% | 21.23 | 59.47 | 58.51 | 59.33 |
?效率/% | 30.68 | 48.31 | 55.98 | 50.94 |
总投资/CNY·t-1·a-1 | 16142 | 15360 | 13280 | 13530 |
总生产成本/CNY·t-1 | 5142 | 4565 | 4425 | 4636 |
内部收益率/% | 9.25 | 13.64 | 18.65 | 16.43 |
直接CO2排放/t·t EG-1 | 2.58 | 0 | 0.57 | 0.06 |
项目 | CtEG | D-SCtEG | S-SCtEG | D+S-SCtEG |
---|---|---|---|---|
原煤/t·t EG-1 | 3.17 | 0.57 | 0.57 | 0.44 |
页岩气/kmol?h-1·t EG-1 | 0 | 1.58 | 1.64 | 2.14 |
总碳输入/kmol·h-1 | 5699.48 | 2034.64 | 2068.02 | 2336.36 |
总?输入/MW | 661.56 | 419.53 | 395.34 | 457.75 |
乙二醇/Mt·a-1 | 0.3 | 0.3 | 0.3 | 0.3 |
碳元素利用效率/% | 21.23 | 59.47 | 58.51 | 59.33 |
?效率/% | 30.68 | 48.31 | 55.98 | 50.94 |
总投资/CNY·t-1·a-1 | 16142 | 15360 | 13280 | 13530 |
总生产成本/CNY·t-1 | 5142 | 4565 | 4425 | 4636 |
内部收益率/% | 9.25 | 13.64 | 18.65 | 16.43 |
直接CO2排放/t·t EG-1 | 2.58 | 0 | 0.57 | 0.06 |
1 | YUE H R, ZHAO Y J, MA X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218. |
2 | 陈冬燕. 中国煤制乙二醇行业发展现状及未来趋势[J]. 上海化工, 2018, 43(11): 43-45. |
CHEN Dongyan. Development and trends of China’s coal-to-ethylene glycol industry[J]. Shanghai Chemical Industry, 2018, 43(11): 43-45. | |
3 | 安超. 全球乙二醇供需分析与预测[J]. 世界石油工业, 2021, 28(5): 38-46. |
AN Chao. Analysis and forecast of global ethylene glycol supply and demand[J]. World Petroleum Industry, 2021, 28(5): 38-46. | |
4 | 黄格省, 李振宇, 王建明. 我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302. |
HUANG Gesheng, LI Zhenyu, WANG Jianming. Development status of coal chemical industry in China and its influence on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302. | |
5 | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. | |
6 | YANG Q, YANG Q C, XU S M, et al. Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production[J]. Journal of Cleaner Production, 2020, 273: 123120. |
7 | 张丽君. 煤制乙二醇技术经济性分析研究[J]. 能源化工, 2016, 37(2): 1-6. |
ZHANG Lijun. Techno-economic analysis and research for coal-based ethylene glycol route[J]. Energy Chemical Industry, 2016, 37(2): 1-6. | |
8 | GONG M H, YI Q, HUANG Y, et al. Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions[J]. Energy Conversion and Management, 2017, 133: 318-331. |
9 | HAO Y H, HUANG Y, GONG M H, et al. A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor[J]. Energy Conversion and Management, 2015, 106: 466-478. |
10 | YANG Q C, ZHANG C W, ZHANG D W, et al. Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7600-7612. |
11 | YANG Q C, LIU X, ZHU S, et al. Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and technoeconomic analysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3496-3510. |
12 | 唐宏青. 现代煤化工新技术[M]. 2版. 北京: 化学工业出版社, 2016. |
TANG Hongqing. Modern coal chemical industry new technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2016. | |
13 | YANG Q C, ZHANG D W, ZHOU H R, et al. Process simulation, analysis and optimization of a coal to ethylene glycol process[J]. Energy, 2018, 155: 521-534. |
14 | 谢书胜, 邹佩良, 史瑾燕. 德士古水煤浆气化、Shell气化和GSP气化工艺对比[J]. 当代化工, 2008, 37(6): 666-668. |
XIE Shusheng, ZOU Peiliang, SHI Jinyan. Comparison the coal gasification technologies—Texaco, Shell and GSP[J]. Contemporary Chemical Industry, 2008, 37(6): 666-668. | |
15 | 王辅臣, 于广锁, 龚欣, 等. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. |
WANG Fuchen, YU Guangsuo, GONG Xin, et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 173-180. | |
16 | 张海峰, 张敏. 不同煤气化技术合成气发酵法制乙醇的可行性探讨[J]. 现代化工, 2020, 40(S1): 279-283. |
ZHANG Haifeng, ZHANG Min. Discussion on feasibility of fermentation to produce ethanol by syngas with different coal gasification technologies[J]. Modern Chemical Industry, 2020, 40(S1): 279-283. | |
17 | 许世森, 王保民. 两段式干煤粉加压气化技术及工程应用[J]. 化工进展, 2010, 29(S1): 290-294. |
XU Shisen, WANG Baomin. Pressure gasification technology and engineering application of two-stage dry pulverized coal [J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 290-294. | |
18 | 高丽. 德士古水煤浆加压气化技术的应用[J]. 煤炭技术, 2010, 29(7): 161-162. |
GAO Li. Application of texaco coal-water slurry presurized gasification[J]. Coal Technology, 2010, 29(7): 161-162. | |
19 | WANG H P, CHEN Z C, ZHANG B, et al. Thermal-calculation method for entrained-flow coal gasifiers[J]. Energy, 2019, 166: 373-379. |
20 | 汪家铭. Shell煤气化技术及其在我国的应用[J]. 煤炭加工与综合利用, 2007(2):37-39. |
WANG Jiaming. Shell coal gasification technology and its use in China[J]. Coal Processing and Comprehensive Utilization, 2007(2): 37-39. | |
21 | 范为鹏. GSP气化技术的发展与优化[J]. 石油化工应用, 2012, 31(7): 77-79, 98. |
FAN Weipeng. Development and optimization of GSP gasification technology [J]. Petrochemical Industry Application, 2012, 31(7): 77-79, 98. | |
22 | YANG Q C, ZHU S, YU P J, et al. Thermodynamic and techno-economic analysis of coal to ethylene glycol process (CtEG) with different coal gasifiers[J]. Energy Conversion and Management, 2019, 191: 80-92. |
23 | JU Y, LEE C H. Evaluation of the energy efficiency of the shell coal gasification process by coal type[J]. Energy Conversion and Management, 2017, 143: 123-136. |
24 | KUNZE C, Modelling SPLIETHOFF H., comparison and operation experiences of entrained flow gasifier[J]. Energy Conversion and Management, 2011, 52(5): 2135-2141. |
25 | SARKIS R BET, ZARE V. Proposal and analysis of two novel integrated configurations for hybrid solar-biomass power generation systems: thermodynamic and economic evaluation[J]. Energy Conversion and Management, 2018, 160: 411-425. |
26 | QIN S Y, CHANG S Y, YAO Q. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432. |
27 | WANG Z Q, SUN J, XU Z N, et al. CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity[J]. Nanoscale, 2020, 12(39): 20131-20140. |
28 | WANG C Z, XU W S, QIN Z X, et al. Low-temperature synthesis of α-alumina nanosheets on microfibrous-structured Al-fibers for Pd-catalyzed CO oxidative coupling to dimethyl oxalate[J]. Catalysis Today, 2020, 354: 158-166. |
29 | XING W C, AN J M, LYU J, et al. Highly active Pd-Fe/α-Al2O3 catalyst with the bayberry tannin as chelating promoter for CO oxidative coupling to diethyl oxalate[J]. Chinese Chemical Letters, 2021, 32(2): 796-800. |
30 | YANG L, PAN Z D, WANG D, et al. Highly effective Pd/MgO/γ-Al2O3 catalysts for CO oxidative coupling to dimethyl oxalate: the effect of MgO coating on γ-Al2O3 [J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28064-28071. |
31 | WANG Q, QIU L, DING D, et al. Performance enhancement of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol through zinc incorporation[J]. Catalysis Communications, 2018, 108: 68-72. |
32 | CUI G Q, MENG X Y, ZHANG X, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
33 | WANG M L, YAO D W, LI A T, et al. Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9414-9422. |
34 | YE R P, LIN L, WANG L C, et al. Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate[J]. ACS Catalysis, 2020, 10(8): 4465-4490. |
35 | WEI R X, YAN C L, YANG A, et al. Improved process design and optimization of 200kt/a ethylene glycol production using coal-based syngas[J]. Chemical Engineering Research and Design, 2018, 132: 551-563. |
36 | YI Q, LI W, FENG J, et al. Carbon cycle in advanced coal chemical engineering[J]. Chemical Society Reviews, 2015, 44(15): 5409-5445. |
37 | YI Q, GONG M H, HUANG Y, et al. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance[J]. Energy, 2016, 112: 618-628. |
38 | YANG S Y, YANG Q C, MAN Y, et al. Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse[J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14406-14414. |
39 | YU B Y, CHIEN I L. Design and optimization of dimethyl oxalate (DMO) hydrogenation process to produce ethylene glycol (EG)[J]. Chemical Engineering Research and Design, 2017, 121: 173-190. |
40 | MAN Y, YANG S Y, QIAN Y. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion and Management, 2016, 117: 162-170. |
41 | XIANG D, JIN T, LEI X R, et al. The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme[J]. Applied Energy, 2018, 212: 944-954. |
42 | RAZZAQ R, LI C S, ZHANG S J. Coke oven gas: availability, properties, purification, and utilization in China[J]. Fuel, 2013, 113: 287-299. |
43 | MAN Y, YANG S Y, XIANG D, et al. Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture[J]. Journal of Cleaner Production, 2014, 71: 59-66. |
44 | YANG Q C, XU S M, ZHANG J L, et al. Thermodynamic and techno-economic analyses of a novel integrated process of coal gasification and methane tri-reforming to ethylene glycol with low carbon emission and high efficiency[J]. Energy, 2021, 229: 120713. |
45 | YANG Q C, ZHANG J L, CHU G Y, et al. Optimal design, thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction[J]. Energy Conversion and Management, 2021, 244: 114538. |
46 | YANG Q C, YANG Q, XU S M, et al. Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies[J]. Energy, 2021, 228: 120535. |
47 | YANG Q, CHU G Y, YANG Q C, et al. Process development and technoeconomic analysis of different integration methods of coal-to-ethylene glycol process and solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14519-14533. |
[1] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[6] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[7] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[8] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[9] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[10] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[11] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[12] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[13] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[14] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[15] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |