Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1645-1653.DOI: 10.16085/j.issn.1000-6613.2021-1848
• Chemical processes integration and optimization • Previous Articles Next Articles
ZHANG Fan1,2(), WANG Shuzhong1(), LI Yanhui1, YANG Jianqiao1, SUN Shenghan1
Received:
2021-08-30
Revised:
2021-11-24
Online:
2022-03-28
Published:
2022-03-23
Contact:
WANG Shuzhong
张凡1,2(), 王树众1(), 李艳辉1, 杨健乔1, 孙圣瀚1
通讯作者:
王树众
作者简介:
张凡(1995—),男,博士研究生,研究方向为能源高效清洁转化与低碳发展。E-mail:基金资助:
CLC Number:
ZHANG Fan, WANG Shuzhong, LI Yanhui, YANG Jianqiao, SUN Shenghan. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653.
张凡, 王树众, 李艳辉, 杨健乔, 孙圣瀚. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1848
机构或方法 | 核算对象 | 计算方法 |
---|---|---|
IPCC | 区域及行业 | |
CEADs[ | 区域及行业 | 能源排放: 水泥生产(工艺排放): |
自上而下[ | 钢铁行业 | |
自上而下[ | 化工行业 | |
自下而上[ | 建材行业 | |
自下而上[ | 造纸行业 |
机构或方法 | 核算对象 | 计算方法 |
---|---|---|
IPCC | 区域及行业 | |
CEADs[ | 区域及行业 | 能源排放: 水泥生产(工艺排放): |
自上而下[ | 钢铁行业 | |
自上而下[ | 化工行业 | |
自下而上[ | 建材行业 | |
自下而上[ | 造纸行业 |
年份 | 排放途径 | 政策情景 | 强化政策情景 | 2℃情景 | 1.5℃情景 |
---|---|---|---|---|---|
2020 | 能源消耗 | 37.7 | 37.7 | 37.7 | 37.7 |
工业过程 | 13.2 | 13.2 | 13.2 | 13.2 | |
总排放量 | 50.9 | 50.9 | 50.9 | 50.9 | |
2030 | 能源消耗 | 45.4 | 42.1 | 38.2 | 14.1 |
工业过程 | 11.7 | 11.0 | 9.5 | 8.8 | |
总排放量 | 57.1 | 53.1 | 47.7 | 22.9 | |
2050 | 能源消耗 | 36.9 | 26.2 | 12.0 | 4.6 |
工业过程 | 9.2 | 8.0 | 4.7 | 2.5 | |
总排放量 | 46.1 | 34.2 | 16.7 | 7.1 |
年份 | 排放途径 | 政策情景 | 强化政策情景 | 2℃情景 | 1.5℃情景 |
---|---|---|---|---|---|
2020 | 能源消耗 | 37.7 | 37.7 | 37.7 | 37.7 |
工业过程 | 13.2 | 13.2 | 13.2 | 13.2 | |
总排放量 | 50.9 | 50.9 | 50.9 | 50.9 | |
2030 | 能源消耗 | 45.4 | 42.1 | 38.2 | 14.1 |
工业过程 | 11.7 | 11.0 | 9.5 | 8.8 | |
总排放量 | 57.1 | 53.1 | 47.7 | 22.9 | |
2050 | 能源消耗 | 36.9 | 26.2 | 12.0 | 4.6 |
工业过程 | 9.2 | 8.0 | 4.7 | 2.5 | |
总排放量 | 46.1 | 34.2 | 16.7 | 7.1 |
代表项目 | 原料 | 产品 | CO2减排效应 |
---|---|---|---|
顺成集团——二氧化碳加氢制甲醇 | 焦炉煤气 | 甲醇联产LNG | 0.44×108m3/a(标准) |
潞安集团——二氧化碳干重整 | 二氧化碳、天然气 | 富一氧化碳合成气 | 60t/d |
久泰集团——二氧化碳/合成气一步法制芳烃 | 二氧化碳/合成气(来自低温甲醇洗装置) | 1,2,4,5-四甲苯及粗氢气 | — |
北京紫顶光合——等离激元光/热催化CO2制清洁燃油 | CO2、H2O、工业废热(均来自电厂) | 燃料燃油 | 160×104t/a |
代表项目 | 原料 | 产品 | CO2减排效应 |
---|---|---|---|
顺成集团——二氧化碳加氢制甲醇 | 焦炉煤气 | 甲醇联产LNG | 0.44×108m3/a(标准) |
潞安集团——二氧化碳干重整 | 二氧化碳、天然气 | 富一氧化碳合成气 | 60t/d |
久泰集团——二氧化碳/合成气一步法制芳烃 | 二氧化碳/合成气(来自低温甲醇洗装置) | 1,2,4,5-四甲苯及粗氢气 | — |
北京紫顶光合——等离激元光/热催化CO2制清洁燃油 | CO2、H2O、工业废热(均来自电厂) | 燃料燃油 | 160×104t/a |
1 | BP p.l.c. BP statistical review of world energy[R]. 2021. |
2 | SHAN Yuli, HUANG Qi, GUAN Dabo, et al. China CO2 emission accounts 2016—2017[J]. Scientific Data, 2020, 7: 54. |
3 | LIN Boqiang, WANG Xiaolei. Carbon emissions from energy intensive industry in China: evidence from the iron & steel industry[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 746-754. |
4 | LIN Boqiang, LONG Houyin. Emissions reduction in China’s chemical industry—Based on LMDI[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1348-1355. |
5 | CHEN Wanlin, YANG Shiyu, ZHANG Xinzhen, et al. Embodied energy and carbon emissions of building materials in China[J]. Building and Environment, 2022, 207: 108434. |
6 | MAN Yi, LI Jigeng, HONG Mengna, et al. Energy transition for the low-carbon pulp and paper industry in China[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109998. |
7 | 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25. |
Project Comprehensive Report Writing Group. A comprehensive report on China’s long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25. | |
8 | An energy sector roadmap to carbon neutrality in China[R]. International Energy Agency, 2021. |
9 | 奚文怡, 蒋小谦, 张默凡, 等. 零碳之路: “十四五”开启中国 绿色发展新篇章[R]. 世界资源研究所, 2020. |
XI Wenyi, JIANG Xiaoqian, ZHANG Mofan, et al. Accelerating the net-zero transition: strategic action for China’s 14th five-year plan[R]. World Resources Institute, 2020. | |
10 | WOETZEL J, 许浩, 汪小帆, 等. “中国加速迈向碳中和”钢铁篇:钢铁行业碳减排路径[R]. 麦肯锡公司, 2021. |
WOETZEL J, XU H, WANG X F, et al. “China accelerates towards carbon neutrality” steel chapter: carbon emission reduction path for steel industry[R]. McKinsey & Company, 2021. | |
11 | WOETZEL J, 许浩, 汪小帆, 等. “中国加速迈向碳中和”水泥篇:水泥行业碳减排路径[R]. 麦肯锡公司, 2021. |
WOETZEL J, XU H, WANG X F, et al. “China accelerates towards carbon neutrality” cement chapter: carbon emission reduction path for cement industry[R]. McKinsey & Company, 2021. | |
12 | CHONG C H, TAN W X, TING Z J, et al. The driving factors of energy-related CO2 emission growth in Malaysia: the LMDI decomposition method based on energy allocation analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109356. |
13 | CHEN Y W, WONG C W Y, YANG R, et al. Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China[J]. Energy, 2021, 237: 121623. |
14 | HOWARTH R W, JACOBSON M Z. How green is blue hydrogen? [J]. Energy Science & Engineering, 2021, 9(10): 1676-1687. |
15 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
16 | ABUELGASIM S, WANG W J, ABDALAZEEZ A. A brief review for chemical looping combustion as a promising CO2 capture technology: fundamentals and progress[J]. Science of the Total Environment, 2021, 764: 142892. |
17 | BACHU S. CO2 storage in geological media: role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2): 254-273. |
18 | KREVOR S C M, LACKNER K S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 1073-1080. |
19 | 刁玉杰, 张森琦, 郭建强, 等. CO2地质储存泄露安全风险评价方法初探[J]. 中国人口·资源与环境, 2012, 22(8): 84-89. |
DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Preliminary research on CO2 leakage safety risk assessment method of geological storage project[J]. China Population, Resources and Environment, 2012, 22(8): 84-89. | |
20 | SAIRA, JANNA F, LE-HUSSAIN F. Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—Review and simulations[J]. Energy Reports, 2020, 6: 1922-1941. |
21 | 余晓晖, 刘默, 蒋昕昊, 等. 工业互联网体系架构2.0[J]. 计算机集成制造系统, 2019, 25(12): 2983-2996. |
YU Xiaohui, LIU Mo, JIANG Xinhao, et al. Industrial Internet architecture 2.0[J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 2983-2996. | |
22 | 杨晨, 马瑞成, 王雨石, 等. 深度学习与工业互联网安全:应用与挑战[J]. 中国工程科学, 2021, 23(2): 95-103. |
YANG Chen, MA Ruicheng, WANG Yushi, et al. Deep learning and industrial Internet security: application and challenges[J]. Strategic Study of CAE, 2021, 23(2): 95-103. | |
23 | 胡琳, 杨建军, 韦莎, 等. 工业互联网标准体系构建与实施路径[J]. 中国工程科学, 2021, 23(2): 88-94. |
HU Lin, YANG Jianjun, WEI Sha, et al. Construction and implementation path for industrial Internet standards system in China[J]. Strategic Study of CAE, 2021, 23(2): 88-94. | |
24 | 王玲, 李广建, 张文娟, 等. 富氧底吹粗铜熔炼渣中铜的赋存状态研究[J]. 有色金属(冶炼部分), 2019(9): 97-102. |
WANG Ling, LI Guangjian, ZHANG Wenjuan, et al. Mineralogical study of copper loss in oxygen bottom blown smelting slag[J]. Nonferrous Metals (Extractive Metallurgy), 2019(9): 97-102. | |
25 | LIN Boqiang, XU Lin. Energy conservation of electrolytic aluminum industry in China[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 676-686. |
26 | VOGL V, ÅHMAN M, NILSSON L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203: 736-745. |
27 | SUOPAJÄRVI H, UMEKI K, MOUSA E, et al. Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2 steel production technologies[J]. Applied Energy, 2018, 213: 384-407. |
28 | BAO Qipeng, GUO Lei, GUO Zhancheng. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines[J]. Powder Technology, 2021, 377: 149-162. |
29 | MAIHATCHI AHAMED A, PONS M N, RICOUX Q, et al. Production of electrolytic iron from red mud in alkaline media[J]. Journal of Environmental Management, 2020, 266: 110547. |
30 | CHEN Gaofeng, YUAN Yifei, JIANG Haifeng, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5(8): 605-613. |
31 | 武娟妮, 张岳玲, 田亚峻, 等. 新型煤化工的生命周期碳排放趋势分析[J]. 中国工程科学, 2015, 17(9): 69-74. |
WU Juanni, ZHANG Yueling, TIAN Yajun, et al. Anylysis on carbon emission based on the life cycle of new coal chemical industry[J]. Engineering Sciences, 2015, 17(9): 69-74. | |
32 | 王明华. 氢能-煤基能源产业战略转型路径研究[J]. 现代化工, 2021, 41(7): 1-4. |
WANG Minghua. Research on strategic transformation paths for hydrogen energy-coal-based energy industry[J]. Modern Chemical Industry, 2021, 41(7): 1-4. | |
33 | GHOSH S, SEBASTIAN J, OLSSON L, et al. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst[J]. Chemical Engineering Journal, 2021, 416: 129120. |
34 | HU Jingting, YU Liang, DENG Jiao, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4(3): 242-250. |
35 | LI Ziwei, LIN Qian, LI Min, et al. Recent advances in process and catalyst for CO2 reforming of methane[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110312. |
36 | WANG D, XIE Z H, POROSOFF M D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem., 2021, 7(9): 2277-2311. |
37 | MATHEW G M, RAINA D, NARISETTY V, et al. Recent advances in biodiesel production: challenges and solutions[J]. Science of the Total Environment, 2021, 794: 148751. |
38 | CHHANDAMA M V L, SATYAN K B, CHANGMAI B, et al. Microalgae as a feedstock for the production of biodiesel: a review[J]. Bioresource Technology Reports, 2021, 15: 100771. |
39 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[7] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[8] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[9] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[10] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[13] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[14] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[15] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |