1 |
ZHAI Y Z, ZHAO X B, TENG Y G, et al. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China[J]. Ecotoxicology and Environmental Safety, 2017, 137: 130-142.
|
2 |
王博, 叶春, 李法云, 等. 水生植物制生物炭对硝态氮的吸附规律研究[J]. 中国环境科学, 2017, 37(1): 116-122.
|
|
WANG Bo, YE Chun, LI Fayun, et al. Studies on adsorption of nitrate from modified hydrophyte biochars[J]. China Environmental Science, 2017, 37(1): 116-122.
|
3 |
张雯, 尹琳, 周念清. 地下水氮污染原位修复缓释碳源材料的研发与物化-生境协同特性[J]. 环境科学, 2018, 39(9): 4150-4160.
|
|
ZHANG Wen, YIN Lin, ZHOU Nianqing. Development and evaluation of a sustainable long-release carbon material applied for in situ remediation of groundwater nitrogen pollution[J]. Environmental Science, 2018, 39(9): 4150-4160.
|
4 |
LUBPHOO Y, CHYAN J M, GRISDANURAK N, et al. Nitrogen gas selectivity enhancement on nitrate denitrification using nanoscale zero-valent iron supported palladium/copper catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57: 143-153.
|
5 |
WANG S Q, CHEN S Y, WANG Y, et al. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (bio-nZVI-RD): a perfect marriage for the remediation of organohalide pollutants?[J]. Biotechnology Advances, 2016, 34(8): 1384-1395.
|
6 |
ARSHADI M, ABDOLMALEKI M K, MOUSAVINIA F, et al. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(Ⅱ) and Hg(Ⅱ) from water: aging time and mechanism study[J]. Journal of Colloid and Interface Science, 2017, 486: 296-308.
|
7 |
LI Y R, ZHAO H P, ZHU L Z. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review[J]. Science of the Total Environment, 2021, 760: 143413.
|
8 |
STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287: 618-632.
|
9 |
BOLADE O P, WILLIAMS A B, BENSON N U. Green synthesis of iron-based nanomaterials for environmental remediation: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100279.
|
10 |
WEI A L, MA J, CHEN J J, et al. Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron[J]. Chemical Engineering Journal, 2018, 353: 595-605.
|
11 |
SHI J L, LONG C, LI A M. Selective reduction of nitrate into nitrogen using Fe-Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH[J]. Chemical Engineering Journal, 2016, 286: 408-415.
|
12 |
樊明德, 袁鹏, 何宏平, 等. 化学液相还原法制备零价铁纳米颗粒研究进展及展望[J]. 化工进展, 2012, 31(7): 1542-1548, 1580.
|
|
FAN Mingde, YUAN Peng, HE Hongping, et al. Review and prospect of zerovalent iron nanoparticles synthesized by chemical solution reduction process[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1542-1548, 1580.
|
13 |
阚连宝, 刘泽. 纳米零价铁制备与应用的研究进展[J]. 环境科学与技术, 2019, 42(6): 215-223.
|
|
KAN Lianbao, LIU Ze. Research progress in preparation and application of nano-zero-valent iron[J]. Environmental Science & Technology, 2019, 42(6): 215-223.
|
14 |
LI P J, LIN K R, FANG Z Q, et al. Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar[J]. Journal of Cleaner Production, 2017, 151: 21-33.
|
15 |
赵云, 祝方, 任文涛. 绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究[J]. 环境工程, 2018, 36(7): 71-76.
|
|
ZHAO Yun, ZHU Fang, REN Wentao. Kinetics of nitrate removal in groundwater using green synthesized nanoscale zero valent iron-nickel[J]. Environmental Engineering, 2018, 36(7): 71-76.
|
16 |
郭兵毅, 刘桂梅, 曾玉彬, 等. 磁性石墨烯负载纳米铁铜去除硝态氮动力学研究[J]. 水处理技术, 2017, 43(7): 38-43.
|
|
GUO Bingyi, LIU Guimei, ZENG Yubin, et al. Study on kinetics of nitrate nitrogen removing by magnetic graphene supported nano iron-copper[J]. Technology of Water Treatment, 2017, 43(7): 38-43.
|
17 |
马溶涵, 王英刚, 李小川, 等. 硅藻土负载纳米铁去除地下水硝酸盐氮污染[J]. 沈阳大学学报(自然科学版), 2019, 31(1): 22-27.
|
|
MA Ronghan, WANG Yinggang, LI Xiaochuan, et al. Removal of nitrate and nitrogen pollution from groundwater by nano-iron supported on diatomite[J]. Journal of Shenyang University (Natural Science), 2019, 31(1): 22-27.
|
18 |
闫奇, 郑乾送, 周江敏, 等. 生物炭负载羧甲基纤维素钠稳定化纳米铁对水中六价铬的去除[J]. 环境工程学报, 2020, 14(3): 579-587.
|
|
YAN Qi, ZHENG Qiansong, ZHOU Jiangmin, et al. Removal of hexavalent chromium from water by biochar supported with sodium carboxymethyl cellulose-stabilized nano-iron[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 579-587.
|
19 |
查晓松, 冯智梁, 金苏雯. 铁-铜双金属还原去除水中硝酸盐研究[J]. 水处理技术, 2020, 46(8): 44-48.
|
|
ZHA Xiaosong, FENG Zhiliang, JIN Suwen. Removal of nitrate in water by reduction of iron-based bimetal[J]. Technology of Water Treatment, 2020, 46(8): 44-48.
|
20 |
张星星, 孟凡生, 王业耀, 等. 零价铁修复硝酸盐污染地下水的影响因素[J]. 环境工程, 2010, 28(S1): 70-73.
|
|
ZHANG Xingxing, MENG Fansheng, WANG Yeyao, et al. Research on influencing factors of nitrate removal of groundwater by ZVI[J]. Environmental Engineering, 2010, 28(S1): 70-73.
|
21 |
KHALIL A M E, ELJAMAL O, JRIBI S, et al. Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition[J]. Chemical Engineering Journal, 2016, 287: 367-380.
|
22 |
马锋锋, 赵保卫, 钟金魁, 等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J]. 中国环境科学, 2015, 35(4): 1156-1163.
|
|
MA Fengfeng, ZHAO Baowei, ZHONG Jinkui, et al. Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors[J]. China Environmental Science, 2015, 35(4): 1156-1163.
|
23 |
吴丽瑞, 陈进峰, 王海玲, 等. 秸秆基Li/Al层状双金属氢氧化物纳米复合吸附剂的制备及其除磷性能研究[J]. 环境污染与防治, 2019, 41(2): 155-159.
|
|
WU Lirui, CHEN Jinfeng, WANG Hailing, et al. Development of Li/Al LDH-loaded nanocomposite for removal of phosphorus from water[J]. Environmental Pollution & Control, 2019, 41(2): 155-159.
|
24 |
GAO W L, GUAN N J, CHEN J X, et al. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water[J]. Applied Catalysis B: Environmental, 2003, 46(2): 341-351.
|
25 |
ARAMI M, LIMAEE N Y, MAHMOODI N M. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent[J]. Chemical Engineering Journal, 2008, 139(1): 2-10.
|