Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 130-138.DOI: 10.16085/j.issn.1000-6613.2020-0448
• Energy processes and technology • Previous Articles Next Articles
Yanghao ZHENG1(), Heping LI1,2(), Jianzhong LIU1, Daolun LIANG3, Junhu ZHOU1()
Received:
2020-03-23
Online:
2021-01-12
Published:
2021-01-05
Contact:
Heping LI,Junhu ZHOU
郑阳昊1(), 李和平1,2(), 刘建忠1, 梁导伦3, 周俊虎1()
通讯作者:
李和平,周俊虎
作者简介:
郑阳昊(1998—),男,硕士研究生,研究方向为三氢化铝释氢及应用。E-mail:基金资助:
CLC Number:
Yanghao ZHENG, Heping LI, Jianzhong LIU, Daolun LIANG, Junhu ZHOU. Research progress of aluminum hydride used in fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 130-138.
郑阳昊, 李和平, 刘建忠, 梁导伦, 周俊虎. 三氢化铝应用于燃料电池的研究进展[J]. 化工进展, 2021, 40(1): 130-138.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0448
1 | SIEGEL B, LIBOWITZ G G. CHAPTER 12—The covalent hydrides and hydrides of the groups Ⅴ to Ⅷ transition metals[M]//Metal hydrides. Academic Press, 1968: 545-674. |
2 | BAZYN T, KRIER H, GLUMAC N G, et al. Decomposition of aluminum hydride under solid rocket motor conditions[J]. Journal of Propulsion and Power, 2007, 23(2): 457-464. |
3 | KLEBANOFF L, KELLER J. Final report for the DOE metal hydride center of excellence[R]. Albuquerque, NM: Sandia National Laboratories, 2012. |
4 | BARANOWSKI B, TKACZ M. The equilibrium between solid aluminium hydride and gaseous hydrogen[J]. Zeitschrift für Physikalische Chemie, 1983, 135(135): 27-38. |
5 | KONOVALOV S K, BULYCHEV B M. The P, T-state diagram and solid phase synthesis of aluminum hydride[J]. Inorganic Chemistry, 1995, 34(1): 172-175. |
6 | BROWER F M, MATZEK N E, REIGLER P F, et al. Preparation and properties of aluminum hydride[J]. Journal of the American Chemical Society, 1976, 98(9): 2450-2453. |
7 | SAITOH H, MACHIDA A, KATAYAMA Y, et al. Formation and decomposition of AlH3 in the aluminum-hydrogen system[J]. Applied Physics Letters, 2008, 93(15): 151918-151921. |
8 | GRAETZ J, CHAUDHURI S, WEGRZYN J, et al. Direct and reversible synthesis of AlH3-triethylenediamine from Al and H2[J]. The Journal of Physical Chemistry C, 2007, 111(51): 19148-19152. |
9 | SCRUGGS J A. Preparation of aluminum hydride by hydrogenation of aluminum in presence of a dialkyl aluminum hydride: US 3664811[P]. 1972-05-23. |
10 | DRIVER R, SHERMAN A. Alane, a new solid rocket fuel[EB/OL]. [2020-08-25]. . |
11 | FEWOX C, ZIDAN R, GARCIA B. Aluminium hydride: a reversible material for hydrogen storage[J]. Chemical Communications, 2009, 40(25): 3717-3719. |
12 | ZIDAN R, KNIGHT D A, DINH L V. Novel methods for synthesizing alane without the formation of adducts and free of halides: US 20120141363A1[P]. 2012-06-07. |
13 | SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140. |
14 | SANDROCK G, REILLY J, GRAETZ J, et al. Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles[J]. Applied Physics A, 2005, 80(4): 687-690. |
15 | SANDROCK G, REILLY J, GRAETZ J, et al. Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics[J]. Journal of Alloys and Compounds, 2006, 421(1/2): 185-189. |
16 | 陈田, 刘海镇, 徐丽, 等. Nb基添加剂对AlH3放氢行为的影响[J]. 材料科学与工程学报, 2017, 35(1): 9-13. |
CHEN T, LIU H Z, XU L, et al. Effects of Nb-based advices on hydrogen desorption properties of AlH3[J]. Journal of Materials Science & Engingering, 2017, 35(1): 9-13. | |
17 | OJWANG J G O, SANTEN R A V, KRAMER G J, et al. Parametrization of a reactive force field for aluminum hydride[J]. Journal of Chemical Physics, 2009, 131(4): 044501. |
18 | PASKEVICIUS M, SHEPPARD D A, BUCKLEY C E. Characterisation of mechanochemically synthesised alane (AlH3) nanoparticles[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 370-376. |
19 | WANG L, RAWAL A, QUADIR M Z, et al. Formation of aluminium hydride (AlH3) via the decomposition of organoaluminium and hydrogen storage properties[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16749-16757. |
20 | WANG L, RAWAL A, AGUEY-ZINSOU K F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3)[J]. Chemical Engineering Science, 2019, 194: 64-70. |
21 | GRAETZ J, REILLY J J, KULLECK J G, et al. Kinetics and thermodynamics of the aluminum hydride polymorphs[J]. Journal of Alloys and Compounds, 2007, 446: 271-275. |
22 | GRAETZ J. New approaches to hydrogen storage[J]. Chemical Society Reviews, 2009, 38(1): 73-82. |
23 | GRAETZ J, REILLY J J. Decomposition kinetics of the AlH3 polymorphs[J]. The Journal of Physical Chemistry B, 2005, 109(47): 22181-22185. |
24 | 李玉玲. α-AlH3的合成及放氢性能的研究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
LI Y L. The synthesis and hydrogen desorption properties of α-AlH3[D]. Harbin: Harbin Institute of Technology, 2018. | |
25 | HERLEY P J, CHRISTOFFERSON O, IRWIN R. Decomposition of alpha-aluminum hydride powder. 1. Thermal decomposition[J]. The Journal of Physical Chemistry, 1981, 85(13): 1874-1881. |
26 | HERLEY P J, CHRISTOFFERSON O. Decomposition of alpha-aluminum hydride powder. 2. Photolytic decomposition[J]. The Journal of Physical Chemistry, 1981, 85(13): 1882-1886. |
27 | HERLEY P J, CHRISTOFFERSON O. Decomposition of alpha-aluminum hydride powder. 3. Simultaneous photolytic-thermal decomposition[J]. The Journal of Physical Chemistry, 1981, 85(13): 1887-1892. |
28 | 橋邦彦, 伊藤秀明, 兜森俊樹. など. 高密度水素貯蔵材料としてのアルミニウム水素化物 (AlH3) の合成技術の開発[J]. まてりあ, 2008, 47(2): 108-110. |
29 | GABIS I, DOBROTVORSKIY M, EVARD E, et al. Kinetics of dehydrogenation of MgH2 and AlH3[J]. Journal of Alloys and Compounds, 2011, 509: S671-S674. |
30 | BULYCHEV B M, VERBETSKII V N, SIZOV A I, et al. Non-solvated aluminum hydride. Crystallization from diethyl ether-benzene solutions[J]. Russian Chemical Bulletin, 2007, 56(7): 1305-1312. |
31 | GABIS I, BARABAN A, KUZNETSOV V, et al. A mechanism of ultraviolet activation of the α-AlH3 decomposition[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15844-15850. |
32 | GABIS I, VOYT A, CHERNOV I, et al. Ultraviolet activation of thermal decomposition of α-alane[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14405-14412. |
33 | GRAETZ J. Metastable metal hydrides for hydrogen storage[J]. International Scholarly Research Network Materials Science, 2012, 2012:1-18. |
34 | GRAETZ J, VAJO J J. Controlled hydrogen release from metastable hydrides[J]. Journal of Alloys and Compounds, 2018, 743: 691-696. |
35 | GRAETZ J, WEGRZYN J, JOHNSON J, et al. Aluminum hydride regeneration[R]. Washington DC: Brookhaven National Laboratory, 2010. |
36 | GRAETZ J, REILLY J J, YARTYS V A, et al. Aluminum hydride as a hydrogen and energy storage material: Past, present and future[J]. Journal of Alloys & Compounds, 2011, 509(S2): S517-S528. |
37 | ISMAIL I M, HAWKINS T. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)[J]. Thermochimica Acta, 2005, 439(1/2): 32-43. |
38 | PARASKOS A, HANKS J, LUND G. Synthesis and characterization of alpha alane[EB/OL]. [2020-08-25]. . |
39 | TARASOV V P, MURAVLEV Y B, BAKUM S I, et al. Kinetics of formation of metallic aluminum upon thermal and photolytic decomposition of aluminum trihydride and trideuteride as probed by NMR[J]. Doklady Physical Chemistry, 2003, 393(4): 353-356. |
40 | WEISER V, EISENREICH N, KOLECZKO A, et al. On the oxidation and combustion of AlH3 a potential fuel for rocket propellants and gas generators[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 213-221. |
41 | NAKAGAWA Y, ISOBE S, WANG Y, et al. Dehydrogenation process of AlH3 observed by TEM[J]. Journal of Alloys and Compounds, 2013, 580: S163-S166. |
42 | NAKAGAWA Y, LEE C, MATSUI K, et al. Doping effect of Nb species on hydrogen desorption properties of AlH3[J]. Journal of Alloys and Compounds, 2018, 734: 55-59. |
43 | SINKE G C, WALKER L C, OETTING F L, et al. Thermodynamic properties of aluminum hydride[J]. The Journal of Chemical Physics, 1967, 47(8): 2759-2761. |
44 | 田野倉力. 多様化する燃料電池車の水素貯蔵技術[J]. 日経Automotive Technology, 2008, 18H(5): 92-98. |
45 | STRIZKI M, MOHRING R M. Hydrogen gas generation system: US 7105033[P]. 2006-09-12. |
46 | Savannah River National Laboratory. SRNL research paves way for portable power systems[EB/OL]. [2020-08-25]. . |
47 | TEPROVICH JR J A, MOTYKA T, ZIDAN R. Hydrogen system using novel additives to catalyze hydrogen release from the hydrolysis of alane and activated aluminum[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1594-1603. |
48 | 刘洪新, 陈信任. 一种制备氢气的装置及方法: CN110790222A [P]. 2020-02-14. |
LIU H X, CHEN X R. A device and method for preparing hydrogen: CN110790222A[P]. 2020-02-14. | |
49 | Fuel Cell Technologies Office. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. [2020-08-25]. . |
50 | AHLUWALIA R K, HUA T Q, PENG J K. Automotive storage of hydrogen in alane[J]. International Journal of Hydrogen Energy, 2009, 34(18): 7731-7740. |
51 | AHLUWALIA R K, HUA T Q, PENG J K. On-board and off-board performance of hydrogen storage options for light-duty vehicles[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2891-2910. |
52 | BROOKS K P, SEMELSBERGER T A, SIMMONS K L, et al. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications[J]. Journal of Power Sources, 2014, 268: 950-959. |
53 | DEVARAKONDA M N, BROOKS K P, RONNEBRO E, et al. Chemical hydrides for hydrogen storage in fuel cell applications[R]. Richland, WA: Pacific Northwest National Laboratory, 2012. |
54 | BRAITHWAITE D, HELLAND C A, DUBOIS T G, et al. Recent achievements with alane (aluminum hydride, AlH3) and fuel cell power systems[R]. San Francisco: Ardica Technologies, 2019: 242-245. |
55 | WARD P A, TAMBURELLO D, HARDY B, et al. Investigation of solid state hydrides for autonomous fuel cell vehicles[R]. Washington DC: Savannah River National Laboratory, 2018. |
56 | GREW K N, BROWNLEE Z B, SHUKLA K C, et al. Assessment of alane as a hydrogen storage media for portable fuel cell power sources[J]. Journal of Power Sources, 2012, 217: 417-430. |
57 | THAMPAN T, SHAH D, COOK C, et al. Development and evaluation of portable and wearable fuel cells for soldier use[J]. Journal of Power Sources, 2014, 259: 276-281. |
58 | Department of Defense. MIL-S, department of defense design criteria standard: human engineering[S]. Washington: Department of Defense, 1999. |
59 | THAMPAN T, ATWATER T, COOK C, et al. Hydrogen generation from aluminum hydride for wearable polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9402-9409. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[4] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[8] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[9] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[10] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[11] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[12] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[13] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[14] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[15] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |