Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 111-129.DOI: 10.16085/j.issn.1000-6613.2020-0197
• Energy processes and technology • Previous Articles Next Articles
Ziqian WANG1,2,3(), Linlin YANG1,2, Hai SUN1,2()
Received:
2020-02-12
Online:
2021-01-12
Published:
2021-01-05
Contact:
Hai SUN
通讯作者:
孙海
作者简介:
王子乾(1994—),男,硕士研究生,研究方向为醇类燃料电池。E-mail:基金资助:
CLC Number:
Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅱ: Operation conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 111-129.
王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分: 操作条件[J]. 化工进展, 2021, 40(1): 111-129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0197
1 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6):2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
2 | DOE. Fuel cell technologies office multi-year research, development, and demonstration plan[R]. DOE, 2016: 17-30. |
3 | OONO Y, SOUNAI A, HORI M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373. |
4 | OONO Y, SOUNAI A, HORI M. Prolongation of lifetime of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 241: 87-93. |
5 | SCHMIDT T, BAURMEISTER J. Durability and reliability in high-temperature reformed hydrogen PEFCs[J]. ECS Transactions, 2006, 3(1): 861-869. |
6 | SCHMIDT T J, BAURMEISTER J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode[J]. Journal of Power Sources, 2008, 176(2): 428-434. |
7 | YANG J S, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15. |
8 | YU S, XIAO L, BENICEWICZ B C. Durability studies of PBI-based high temperature PEMFCs[J]. Fuel Cells, 2008, 8(3/4): 165-174. |
9 | XIAO L X, ZHANG H F, SCANLON E, et al. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process[J]. Chemistry of Materials, 2005, 17(21): 5328-5333. |
10 | WANNEK C, KOHNEN B, OETJEN H F, et al. Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions[J]. Fuel Cells, 2008, 8(2): 87-95. |
11 | H-J LEE, KIM B G, LEE D H, et al. Demonstration of a 20W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5521-5526. |
12 | YANG J, LI Q, CLEEMANN L N, et al. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells[J]. Journal of Materials Chemistry, 2012, 22(22): 11185-11195. |
13 | AILI D, CLEEMANN L N, LI Q, et al. Thermal curing of PBI membranes for high temperature PEM fuel cells[J]. Journal of Materials Chemistry, 2012, 22(12): 5444-5453. |
14 | GALBIATI S, BARICCI A, CASALEGNO A, et al. Degradation in phosphoric acid doped polymer fuel cells: A 6000h parametric investigation[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6469-6480. |
15 | KONDRATENKO M S, PONOMAREV I I, GALLYAMOV M O, et al. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications[J]. Beilstein Journal of Nanotechnology, 2013, 4: 481-492. |
16 | MODESTOV A D, TARASEVICH M R, FILIMONOV V Y, et al. Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test[J]. Electrochimica Acta, 2009, 54(27): 7121-7127. |
17 | MOçOTéGUY P, LUDWIG B, SCHOLTA J, et al. Long term testing in continuous mode of HT-PEMFC based H3PO4/PBI Celtec-P MEAs for μ-CHP applications[J]. Fuel Cells, 2009, 9(4): 325-348. |
18 | LIU F, KVESIĆ M, WIPPERMANN K, et al. Effect of spiral flow field design on performance and durability of HT-PEFCs[J]. Journal of the Electrochemical Society, 2013, 160(8): F892-F897. |
19 | MOLLEO M A, CHEN X, PLOEHN H J, et al. High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties[J]. Fuel Cells, 2014, 14(1): 16-25. |
20 | JANßEN H, SUPRA J, LüKE L, et al. Development of HT-PEFC stacks in the kW range[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4705-4713. |
21 | PINAR F J, PILINSKI N, WAGNER P. Long-term testing of a high temperature polymer electrolyte membrane fuel cell: the effect of reactant gases[J]. AIChE Journal, 2016, 62(1): 217-227. |
22 | SUZUKI A, OONO Y, WILLIAMS M C, et al. Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18272-18289. |
23 | RASTEDT M, PINAR F J, WAGNER P, et al. Ultralow degradation rates in HT-PEM fuel cells[J]. ECS Transactions, 2016, 75(14): 301-315. |
24 | SøNDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. Journal of Power Sources, 2017, 342: 570-578. |
25 | SUN X, LI Y, QI F, et al. Degradation studies of single cell and short stack for high temperature proton exchange membrane fuel cells based on PBI/H3PO4 membrane[J]. ChemistrySelect, 2019, 4(42): 12313-12319. |
26 | ZHANG T, WANG P, CHEN H, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition[J]. Applied Energy, 2018, 223: 249-262. |
27 | HARTNIG C, SCHMIDT T J. Simulated start-stop as a rapid aging tool for polymer electrolyte fuel cell electrodes[J]. Journal of Power Sources, 2011, 196(13): 5564-5572. |
28 | KANNAN A, KABZA A, SCHOLTA J. Long term testing of start-stop cycles on high temperature PEM fuel cell stack[J]. Journal of Power Sources, 2015, 277: 312-316. |
29 | KANNAN A, KACZEROWSKI J, KABZA A, et al. Operation strategies based on carbon corrosion and lifetime investigations for high temperature polymer electrolyte membrane fuel cell stacks[J]. Fuel Cells, 2018, 18(3): 287-298. |
30 | RASTEDT M, PINAR F J, PILINSKI N, et al. Effect of operation strategies on phosphoric acid loss in HT-PEM fuel cells[J]. ECS Transactions, 2016, 75(14): 455-469. |
31 | MOçOTéGUY P, LUDWIG B, SCHOLTA J, et al. Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI Celtec-P based membrane electrode assemblies for micro-CHP applications[J]. Fuel Cells, 2010, 10(2): 299-311. |
32 | THOMAS S, JEPPESEN C, STEENBERG T, et al. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27230-27240. |
33 | PINAR F J, RASTEDT M, DYCK A, et al. Long-term operation of high temperature polymer electrolyte membrane fuel cells with fuel composition switching and oxygen enrichment[J]. Fuel Cells, 2018, 18(3): 260-269. |
34 | LIU S, RASINSKI M, RAHIM Y, et al. Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2019, 439: 227090. |
35 | ZHANG S, YUAN X-Z, HIN J N C, et al. Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1142-1148. |
36 | QI Z, BUELTE S. Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1126-1132. |
37 | TERANISHI K, KAWATA K, TSUSHIMA S, et al. Degradation mechanism of PEMFC under open circuit operation[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A475-A477. |
38 | OHMA A, SUGA S, YAMAMOTO S, et al. Phenomenon analysis of PEFC for automotive use(1) membrane degradation behavior during OCV hold test[J]. ECS Transactions, 2006, 3(1): 519-529. |
39 | ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344. |
40 | LIU S, RASINSKI M, LIN Y, et al. Effects of constant load operations on platinum bands formation and cathode degradation in high-temperature polymer electrolyte fuel cells[J]. Electrochimica Acta, 2018, 289: 354-362. |
41 | SUGAWARA S, MARUYAMA T, NAGAHARA Y, et al. Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition[J]. Journal of Power Sources, 2009, 187(2): 324-331. |
42 | JAVIER PINAR F, RASTEDT M, PILINSKI N, et al. Effect of idling temperature on high temperature polymer electrolyte membrane fuel cell degradation under simulated start/stop cycling conditions[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19463-19474. |
43 | KAMAL R, CHAN S H. Sensitivity analysis of anode overpotential during start-up process of a high temperature proton exchange membrane fuel cell[J]. Electrochimica Acta, 2015, 176: 965-975. |
44 | BANDLAMUDI V, BUJLO P, SITA C, et al. Study on electrode carbon corrosion of high temperature proton exchange membrane fuel cell[J]. Materials Today: Proceedings, 2018, 5(4): 10602-10610. |
45 | REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A273-A276. |
46 | SHEN Q, HOU M, LIANG D, et al. Study on the processes of start-up and shutdown in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 189(2): 1114-1119. |
47 | ISHIGAMI Y, TAKADA K, YANO H, et al. Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—start-up/shut-down simulation[J]. Journal of Power Sources, 2011, 196(6): 3003-3008. |
48 | ENGL T, GUBLER L, SCHMIDT T J. Fuel electrode carbon corrosion in high temperature polymer electrolyte fuel cells-crucial or irrelevant?[J]. Energy Technology, 2016, 4(1): 65-74. |
49 | SCHWäMMLEIN J N, RHEINLäNDER P J, CHEN Y, et al. Anode aging during PEMFC start-up and shut-down: H2-air fronts vs voltage cycles[J]. Journal of the Electrochemical Society, 2018, 165(16): F1312-F1322. |
50 | SøNDERGAARD T, CLEEMANN L N, ZHONG L, et al. Catalyst degradation under potential cycling as an accelerated stress test for PBI-based high-temperature PEM fuel cells—effect of humidification[J]. Electrocatalysis, 2017, 9(3): 302-313. |
51 | BANDLAMUDI V, BUJLO P, LINKOV V, et al. The effect of potential cycling on high temperature PEM fuel cell with different flow field designs[J]. Fuel Cells, 2019, 19(3): 231-243. |
52 | REIMER U, SCHUMACHER B, LEHNERT W. Accelerated degradation of high-temperature polymer electrolyte fuel cells: discussion and empirical modeling[J]. Journal of the Electrochemical Society, 2014, 162(1): F153-F164. |
53 | SCHONVOGEL D, RASTEDT M, WAGNER P, et al. Impact of accelerated stress tests on high temperature PEMFC degradation[J]. Fuel Cells, 2016, 16(4): 480-489. |
54 | RASTEDT M, BüSSELMANN J, TULLIUS V, et al. Rapid and flash tests: indicator for quality of HT-PEM fuel cells batches?[J]. Fuel Cells, 2018, 18(2): 113-122. |
55 | BüSSELMANN J, RASTEDT M, TULLIUS V, et al. Evaluation of HT-PEM MEAs: load cycling versus start/stop cycling[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19384-19394. |
56 | BEVILACQUA N, GEORGE M G, GALBIATI S, et al. Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers[J]. Electrochimica Acta, 2017, 257: 89-98. |
57 | HALTER J, MARONE F, SCHMIDT T J, et al. Breaking through the cracks: On the mechanism of phosphoric acid migration in high temperature polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society, 2018, 165(14): F1176-F1183. |
58 | EBERHARDT S H, TOULEC M, MARONE F, et al. Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution[J]. Journal of the Electrochemical Society, 2015, 162(3): F310-F316. |
59 | RASTEDT M, TULLIUS V, BUSSELMANN J, et al. Evaluation of HT-PEM fuel cells via load cycling at high current densities[J]. ECS Transactions, 2017, 80(8): 3-17. |
60 | LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477. |
61 | PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs[J]. Electrochimica Acta, 2014, 120: 30-38. |
62 | ZHOU F, ANDREASEN S J, KæR S K. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation[J]. International Journal of Hydrogen Energy, 2015, 40(20): 6672-6680. |
63 | ORFANIDI A, DALETOU M K, SYGELLOU L, et al. The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells[J]. Journal of Applied Electrochemistry, 2013, 43(11): 1101-1116. |
64 | YU Y, YUAN X-Z, LI H, et al. Current mapping of a proton exchange membrane fuel cell with a segmented current collector during the gas starvation and shutdown processes[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15288-15300. |
65 | ZHANG G, SHEN S, GUO L, et al. Dynamic characteristics of local current densities and temperatures in proton exchange membrane fuel cells during reactant starvations[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1884-1892. |
66 | ZHOU F, ANDREASEN S J, KæR S K, et al. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839. |
67 | MITSUDA K, MURAHASHI T. Air and fuel starvation of phosphoric acid fuel cells—A study using a single cell with multi-reference electrodes[J]. Journal of Applied Electrochemistry, 1991, 21: 524-530. |
68 | YEZERSKA K, DUSHINA A, LIU F, et al. Characterization methodology for anode starvation in HT-PEM fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18330-18339. |
69 | TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329. |
70 | ALEGRE C, LOZANO A, MANSO Á P, et al. Single cell induced starvation in a high temperature proton exchange membrane fuel cell stack[J]. Applied Energy, 2019, 250: 1176-1189. |
71 | FREUNBERGER S A, SCHNEIDER I A, P-C SUI, et al. Cell interaction phenomena in polymer electrolyte fuel cell stacks[J]. Journal of The Electrochemical Society, 2008, 155(7): B704-B714. |
72 | LIU Z, YANG L, MAO Z, et al. Behavior of PEMFC in starvation[J]. Journal of Power Sources, 2006, 157(1): 166-176. |
73 | JIMéNEZ S, SOLER J, VALENZUELA R X, et al. Assessment of the performance of a PEMFC in the presence of CO[J]. Journal of Power Sources, 2005, 151: 69-73. |
74 | GU T, LEE W K, ZEE J W V. Quantifying the ‘reverse water gas shift’ reaction inside a PEM fuel cell[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 43-50. |
75 | MOHTADI R, LEE W K, VAN ZEE J W. The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 37-42. |
76 | TSUSHIMA S, KANEKO K, MORIOKA H, et al. Influence of SO2 concentration and relative humidity on electrode poisoning in polymer electrolyte membrane fuel cells[J]. Journal of Thermal Science and Technology, 2012, 7(4): 619-632. |
77 | ZHAI Y, BETHUNE K, BENDER G, et al. Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy[J]. Journal of The Electrochemical Society, 2012, 159(5): B524-B530. |
78 | URIBE F A, GOTTESFELD S, ZAWODZINSKI T A. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance[J]. Journal of the Electrochemical Society, 2002, 149(3): A293-A296. |
79 | GARSANY Y, GOULD B D, BATURINA O A, et al. Comparison of the sulfur poisoning of PBI and Nafion PEMFC cathodes[J]. Electrochemical and Solid-State Letters, 2009, 12(9): B138-B140. |
80 | MODESTOV A D, TARASEVICH M R, FILIMONOV V Y, et al. CO tolerance and CO oxidation at Pt and Pt-Ru anode catalysts in fuel cell with polybenzimidazole-H3PO4 membrane[J]. Electrochimica Acta, 2010, 55(20): 6073-6080. |
81 | BOAVENTURA M, SANDER H, FRIEDRICH K A, et al. The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2011, 56(25): 9467-9475. |
82 | SCHMIDT T J, BAURMEISTER J. Development status of high temperature PBI based membrane electrode assemblies[J]. ECS Transactions, 2008, 16(2): 263-270. |
83 | ANDREASEN S J, MOSBÆK R, VANG J R, et al. EIS characterization of the poisoning effects of CO and CO2 on a PBI based HT-PEM fuel cell[C]//ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, Brooklyn, New York: ASME, 2010: 10. |
84 | ZHOU F, ANDREASEN S J, KÆR S K, et al. Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: influence of anode humidification and carbon dioxide[J]. International Journal of Hydrogen Energy, 2015, 40(43): 14932-14941. |
85 | ABDUL RASHEED R K, CHAN S H. Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC – physical model and parametric study[J]. Applied Energy, 2015, 140: 44-51. |
86 | OH K, JEONG G, CHO E, et al. A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21915-21926. |
87 | MISZ U, TALKE A, HEINZEL A, et al. Sensitivity analyses on the impact of air contaminants on automotive fuel cells[J]. Fuel Cells, 2016, 16(4): 444-462. |
88 | ZHAI Y, BENDER G, BETHUNE K, et al. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 247: 40-48. |
89 | TSUSHIMA S, KANEKO K, HIRAI S. Two-stage degradation of PEMFC performance due to sulfur dioxide contamination[J]. ECS Transactions, 2010, 33(1): 1645-1652. |
90 | PUNYAWUDHO K, MONNIER J R, VAN ZEE J W. SO2 adsorption on carbon-supported Pt electrocatalysts[J]. Langmuir, 2011, 27(6): 3138-3143. |
91 | MISZ U, HUGO A. Evaluierung der kathodenseitigen schädigungsmechanismen durch partikuläre und gasförmige luftschadstoffe mit hilfe von elektrochemischen messmethoden zur standzeiterhöhung von PEM-brennstoffzellen[R]. 2012. |
92 | JING F, HOU M, SHI W, et al. The effect of ambient contamination on PEMFC performance[J]. Journal of Power Sources, 2007, 166(1): 172-176. |
93 | CHEN M, DU C, ZHANG J, et al. Effect, mechanism and recovery of nitrogen oxides poisoning on oxygen reduction reaction at Pt/C catalysts[J]. Journal of Power Sources, 2011, 196(2): 620-626. |
94 | ST-PIERRE J, JIA N, RAHMANI R. PEMFC contamination model: competitive adsorption demonstrated with NO2[J]. Journal of the Electrochemical Society, 2008, 155(4): B315-B320. |
95 | YANG D, MA J, XU L, et al. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2006, 51(19): 4039-4044. |
96 | HONGSIRIKARN K, GOODWIN J G, GREENWAY S, et al. Influence of ammonia on the conductivity of Nafion membranes[J]. Journal of Power Sources, 2010, 195(1): 30-38. |
97 | HALSEID R, HEINEN M, JUSYS Z, et al. The effect of ammonium ions on oxygen reduction and hydrogen peroxide formation on polycrystalline Pt electrodes[J]. Journal of Power Sources, 2008, 176(2): 435-443. |
98 | SZYMANSKI S T, GRUVER G A, KATZ M, et al. The effect of ammonia on hydrogen-air phosphoric-acid fuel-cell performance[J]. Journal of the Electrochemical Society, 1980, 127(7): 1440-1444. |
99 | ISORNA LLERENA F, DE LAS HERAS JIMéNEZ A, LóPEZ GONZáLEZ E, et al. Effects of ammonia impurities on the hydrogen flow in high and low temperature polymer electrolyte fuel cells[J]. Fuel Cells, 2019, 19(6): 651-662. |
100 | ALI S T, LI Q, PAN C, et al. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1628-1636. |
101 | LI N H, LIPKOWSKI J. Chronocoulometric studies of chloride adsorption at the Pt(111) electrode surface[J]. Journal of Electroanalytical Chemistry, 2000, 491(1/2): 95-102. |
102 | YADAV A P, NISHIKATA A, TSURU T. Effect of halogen ions on platinum dissolution under potential cycling in 0.5M H2SO4 solution[J]. Electrochimica Acta, 2007, 52(26): 7444-7452. |
103 | SCHMIDT T J, PAULUS U A, GASTEIGER H A, et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions[J]. Journal of Electroanalytical Chemistry, 2001, 508 (1/2): 41-47. |
104 | SIMON ARAYA S, JUHL ANDREASEN S, VENSTRUP NIELSEN H, et al. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18231-18242. |
105 | JEPPESEN C, POLVERINO P, ANDREASEN S J, et al. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21901-21912. |
106 | AILI D, VASSILIEV A, JENSEN J O, et al. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes[J]. Journal of Power Sources, 2015, 279: 517-521. |
107 | THOMAS S, VANG J R, ARAYA S S, et al. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions[J]. Applied Energy, 2017, 192: 422-436. |
108 | SIMON ARAYA S, GRIGORAS I F, ZHOU F, et al. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18343-18350. |
109 | ORFANIDI A, DALETOU M K, NEOPHYTIDES S G. Mitigation strategy towards stabilizing the electrochemical interface under high CO and H2O containing reformate gas feed[J]. Electrochimica Acta, 2017, 233: 218-228. |
110 | ARLT T, MAIER W, TöTZKE C, et al. Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells - effect of operation conditions on structure of membrane[J]. Journal of Power Sources, 2014, 246: 290-298. |
111 | GARCHE J. Encyclopedia of electrochemical power sources[M]. DYER C, MOSELEY P, OGUMI Z, et al. 1st ed.: Elsevier, 2009. |
112 | CLEEMANN L N, BUAZAR F, LI Q, et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes[J]. Fuel Cells, 2013, 13(5): 822-831. |
113 | ENGL T, GUBLER L, SCHMIDT T J. Think different! Carbon corrosion mitigation strategy in high temperature PEFC: a rapid aging study[J]. Journal of the Electrochemical Society, 2015, 162(3): F291-F297. |
114 | FERREIRA-APARICIO P, CHAPARRO A M, FOLGADO M A, et al. Degradation study by start-up/shut-down cycling of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10626-10636. |
115 | LEE S Y, CHO E, LEE J H, et al. Effects of purging on the degradation of PEMFCs operating with repetitive on/off cycles[J]. Journal of the Electrochemical Society, 2007, 154(2): B194-B200. |
116 | GU W, CARTER R N., YU P, et al. Start/stop and local H2 starvation mechanisms of carbon corrosion: Model vs. Experiment[J]. ECS Transactions, 2007, 11(1): 963-973. |
117 | OYARCE A, ZAKRISSON E, IVITY M, et al. Comparing shut-down strategies for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 254: 232-240. |
118 | THOMAS S, ARAYA S S, FRENSCH S H, et al. Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping[J]. Electrochimica Acta, 2019, 317(10): 521-527. |
119 | PHILLIPS A, ULSH M, NEYERLIN K C, et al. Impacts of electrode coating irregularities on polymer electrolyte membrane fuel cell lifetime using quasi in-situ infrared thermography and accelerated stress testing[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6390-6399. |
120 | SINGDEO D, DEY T, GHOSH P C. Modelling of start-up time for high temperature polymer electrolyte fuel cells[J]. Energy, 2011, 36(10): 6081-6089. |
121 | ANDREASEN S J, KÆR S K. Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4655-4664. |
122 | WANG H, HOU J, YU H, et al. Effects of reverse voltage and subzero startup on the membrane electrode assembly of a PEMFC[J]. Journal of Power Sources, 2007, 165(1): 287-292. |
123 | KURZ T, KüFNER F, GERTEISEN D. Heating of low and high temperature PEM fuel cells with alternating current[J]. Fuel Cells, 2018, 18(3): 326-334. |
124 | SONG T-W, K-H CHOI, KIM J-R, et al. Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4671-4679. |
125 | REDDY E H, MONDER D S, JAYANTI S. Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell[J]. Applied Thermal Engineering, 2013, 58(1/2): 155-164. |
126 | SUPRA J, JANßEN H, LEHNERT W, et al. Design and experimental investigation of a heat pipe supported external cooling system for HT-PEFC stacks[J]. Journal of Fuel Cell Science and Technology, 2013, 10(5): 051002. |
127 | ALIZADEH E, RAHGOSHAY S M, RAHIMI-ESBO M, et al. A novel cooling flow field design for polymer electrolyte membrane fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8525-8532. |
128 | REDDY E H, JAYANTI S, MONDER D S. Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1-10kWe[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20127-20138. |
129 | ZHANG C, YU T, YI J, et al. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system[J]. Energy Conversion and Management, 2016, 129: 36-42. |
130 | HUANG H, ZHOU Y, DENG H, et al. Modeling of high temperature proton exchange membrane fuel cell start-up processes[J]. International Journal of Hydrogen Energy, 2016, 41: 3113-3127. |
131 | ABDUL RASHEED R K, ZHANG C, CHAN S H. Numerical analysis of high-temperature proton exchange membrane fuel cells during start-up by inlet gas heating and applied voltage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10390-10406. |
132 | C-J TSENG, Y-J HEUSH, C-J CHIANG, et al. Application of metal foams to high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16196-16204. |
133 | LI S, SUNDéN B. Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27323-27333. |
134 | SINGDEO D, DEY T, GAIKWAD S, et al. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell[J]. Applied Energy, 2017, 195: 13-22. |
135 | MITSUDA K, MURAHASHI T. Characterization of gas flow configurations for phosphoric acid fuel cells[J]. Journal of Applied Electrochemistry, 1991, 21: 395-401. |
136 | JI F, YANG L, LI Y, et al. An experimental method to measure flow distribution in the cathode of high-temperature polymer electrolyte membrane fuel cells stack[J]. Energy Technology, 2019, 7(11): 1900416. |
137 | FURUSAWA K, NAGOSHI K, TANIMOTO S. Control method to reduce degradation in fuel cell system at start-up[J]. Honda R&D Technical Review, 2012, 24(2): 82-88. |
138 | URIAN R C, GULLá A F, MUKERJEE S. Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I[J]. Journal of Electroanalytical Chemistry, 2003, 554/555: 307-324. |
139 | ALCAIDE F, ÁLVAREZ G, TSIOUVARAS N, et al. Electrooxidation of H2/CO on carbon-supported PtRu-MoO nanoparticles for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14590-14598. |
140 | EHTESHAMI S M M, CHAN S H. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells[J]. Electrochimica Acta, 2013, 93: 334-345. |
141 | HENGGE K, HEINZL C, PERCHTHALER M, et al. Unraveling micro-and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells[J]. Journal of Power Sources, 2017, 364: 437-448. |
142 | URIBE F A., VALERIO J A., GARZON F, et al. PEMFC reconfigured anodes for enhancing CO tolerance with air bleed[J]. Electrochemical and Solid-State Letters, 2004, 7(10): A376-A379. |
143 | GOTTESFELD S, PAFFORD J. A new approach to the problem of carbon-monoxide poisoning in fuel-cells operating at low-temperatures[J]. Journal of the Electrochemical Society, 1988, 135(10): 2651-2652. |
144 | KAKATI B K, KUCERNAK A R J, FAHY K F. Using corrosion-like processes to remove poisons from electrocatalysts: a viable strategy to chemically regenerate irreversibly poisoned polymer electrolyte fuel cells[J]. Electrochimica Acta, 2016, 222: 888-897. |
145 | GOULD B D, BENDER G, BETHUNE K, et al. Operational performance recovery of SO2-contaminated proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(11): B1569-B1577. |
146 | LOPES T, J-M SANSIñENA, MUKUNDAN R, et al. Diagnosing the effects of ammonia exposure on PEFC cathodes[J]. Journal of the Electrochemical Society, 2014, 161(6): F703-F709. |
147 | RAU M, CREMERS C, TüBKE J. Development of anodic materials for HT-PEMFCs with high tolerance to H2S[J]. International Journal of Hydrogen Energy, 2015, 40(15): 5439-5443. |
148 | EBERHARDT S H, LOCHNER T, BüCHI F N, et al. Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing[J]. Journal of the Electrochemical Society, 2015, 162(12): F1367-F1372. |
149 | JUNG G-B, CHEN H-H, YAN W-M. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique[J]. Journal of Power Sources, 2014, 247: 354-359. |
150 | TACCANI R, CHINESE T, BOARO M. Effect of accelerated ageing tests on PBI htpem fuel cells performance degradation[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1875-1883. |
151 | LI Q, LIU J, CHEN W. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the Chinese Society of Electrical Engineering, 2019, 39(8): 2365-2375. |
152 | CHALISE S, STERNHAGEN J, HANSEN T M, et al. Energy management of remote microgrids considering battery lifetime[J]. The Electricity Journal, 2016, 29(6): 1-10. |
153 | MARANO V, ONORI S, GUEZENNEC Y, et al. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles[C]//2009 IEEE Vehicle Power and Propulsion Conference. 2009: 536-543. |
154 | C-Y LEE, WENG F-B, S-M CHUANG, et al. Flexible five-in-one micro sensor for in-situ diagnosis of high-temperature proton exchange membrane fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15679-15689. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[12] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[13] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[14] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[15] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |