Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1758-1767.DOI: 10.16085/j.issn.1000-6613.2018-1153
• Industrial catalysis • Previous Articles Next Articles
Chunmei ZHANG(),Tingjun FU(),Juan SHAO,Zhe MA,Yujie WANG,Qian MA,Liping CUI,Zhong LI()
Received:
2018-06-01
Revised:
2018-09-20
Online:
2019-04-05
Published:
2019-04-05
Contact:
Tingjun FU,Zhong LI
张春梅(),付廷俊(),邵娟,马哲,王玉杰,马倩,崔丽萍,李忠()
通讯作者:
付廷俊,李忠
作者简介:
张春梅(1993—),女,硕士研究生,研究方向为碳一化学。E-mail:<email>1007331442@qq.com</email>。|付廷俊,副教授,硕士生导师,研究方向为碳一化学。E-mail:<email>futingjun@tyut.edu.cn</email>|李忠,教授,博士生导师,研究方向为碳一化学。E-mail:<email>lizhong@tyut.edu.cn</email>
基金资助:
CLC Number:
Chunmei ZHANG, Tingjun FU, Juan SHAO, Zhe MA, Yujie WANG, Qian MA, Liping CUI, Zhong LI. Effects of mesoporous structure and Zn promoter on methanol to aromatics performance over different crystal sized ZSM-5 catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1758-1767.
张春梅, 付廷俊, 邵娟, 马哲, 王玉杰, 马倩, 崔丽萍, 李忠. 介孔结构和助剂Zn对不同晶粒大小ZSM-5催化甲醇制芳烃反应性能的影响[J]. 化工进展, 2019, 38(04): 1758-1767.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1153
催化剂 | S BET ① /m2·g-1 | S mic ② /m2·g-1 | S ext ② /m2·g-1 | V total ③ /cm3·g-1 | V mic ② /cm3·g-1 | V meso ④ /cm3·g-1 |
---|---|---|---|---|---|---|
MZ | 350 | 302 | 48 | 0.21 | 0.12 | 0.09 |
MZ-AT | 355 | 176 | 179 | 0.50 | 0.09 | 0.41 |
Zn/MZ | 318 | 271 | 47 | 0.23 | 0.12 | 0.11 |
Zn/MZ-AT | 332 | 165 | 167 | 0.45 | 0.08 | 0.37 |
NZ | 402 | 282 | 120 | 0.51 | 0.13 | 0.38 |
NZ-AT | 377 | 271 | 106 | 0.60 | 0.13 | 0.47 |
Zn/NZ | 365 | 239 | 126 | 0.59 | 0.12 | 0.47 |
Zn/NZ-AT | 349 | 240 | 109 | 0.62 | 0.12 | 0.50 |
催化剂 | S BET ① /m2·g-1 | S mic ② /m2·g-1 | S ext ② /m2·g-1 | V total ③ /cm3·g-1 | V mic ② /cm3·g-1 | V meso ④ /cm3·g-1 |
---|---|---|---|---|---|---|
MZ | 350 | 302 | 48 | 0.21 | 0.12 | 0.09 |
MZ-AT | 355 | 176 | 179 | 0.50 | 0.09 | 0.41 |
Zn/MZ | 318 | 271 | 47 | 0.23 | 0.12 | 0.11 |
Zn/MZ-AT | 332 | 165 | 167 | 0.45 | 0.08 | 0.37 |
NZ | 402 | 282 | 120 | 0.51 | 0.13 | 0.38 |
NZ-AT | 377 | 271 | 106 | 0.60 | 0.13 | 0.47 |
Zn/NZ | 365 | 239 | 126 | 0.59 | 0.12 | 0.47 |
Zn/NZ-AT | 349 | 240 | 109 | 0.62 | 0.12 | 0.50 |
催化剂 | 结晶度/% | 催化剂 | 结晶度/% |
---|---|---|---|
MZ | 100 | NZ | 100 |
MZ-AT | 90 | NZ-AT | 98 |
Zn/MZ | 96 | Zn/NZ | 94 |
Zn/MZ-AT | 86 | Zn/NZ-AT | 86 |
催化剂 | 结晶度/% | 催化剂 | 结晶度/% |
---|---|---|---|
MZ | 100 | NZ | 100 |
MZ-AT | 90 | NZ-AT | 98 |
Zn/MZ | 96 | Zn/NZ | 94 |
Zn/MZ-AT | 86 | Zn/NZ-AT | 86 |
催化剂 | 酸量①/mmol·g-1 | |||
---|---|---|---|---|
总量 | 弱酸 | 中强酸 | 强酸 | |
MZ | 1.21 | 0.48 | 0.26 | 0.47 |
MZ-AT | 0.91 | 0.41 | 0.28 | 0.22 |
Zn/MZ | 0.92 | 0.37 | 0.24 | 0.31 |
Zn/MZ-AT | 0.85 | 0.35 | 0.34 | 0.16 |
NZ | 0.76 | 0.24 | 0.19 | 0.33 |
NZ-AT | 0.74 | 0.24 | 0.19 | 0.31 |
Zn/NZ | 0.66 | 0.25 | 0.22 | 0.19 |
Zn/NZ-AT | 0.61 | 0.23 | 0.21 | 0.17 |
催化剂 | 酸量①/mmol·g-1 | |||
---|---|---|---|---|
总量 | 弱酸 | 中强酸 | 强酸 | |
MZ | 1.21 | 0.48 | 0.26 | 0.47 |
MZ-AT | 0.91 | 0.41 | 0.28 | 0.22 |
Zn/MZ | 0.92 | 0.37 | 0.24 | 0.31 |
Zn/MZ-AT | 0.85 | 0.35 | 0.34 | 0.16 |
NZ | 0.76 | 0.24 | 0.19 | 0.33 |
NZ-AT | 0.74 | 0.24 | 0.19 | 0.31 |
Zn/NZ | 0.66 | 0.25 | 0.22 | 0.19 |
Zn/NZ-AT | 0.61 | 0.23 | 0.21 | 0.17 |
催化剂 | 液烃 | 积炭容量 /g·g-1 cat | 积炭速率 /g·g-1·h-1 | ||
---|---|---|---|---|---|
液烃产能 /g·g-1 cat | 最高液烃收率 /% | 寿命 /h | |||
MZ | 6.2 | 19.8 | 20 | 0.11 | 5.3×10-3 |
MZ-AT | 62.8 | 24.0 | 96 | 0.35 | 3.6×10-3 |
Zn/MZ | 1.9 | 15.6 | 12 | 0.07 | 6.0×10-3 |
Zn/MZ-AT | 52.0 | 24.3 | 84 | 0.29 | 3.4×10-3 |
NZ | 237.4 | 28.9 | 149 | 0.32 | 2.2×10-3 |
NZ-AT | 197.2 | 28.7 | 132 | 0.29 | 2.2×10-3 |
Zn/NZ | 65.7 | 25.4 | 70 | 0.22 | 3.1×10-3 |
Zn/NZ-AT | 93.7 | 28.0 | 84 | 0.28 | 3.3×10-3 |
催化剂 | 液烃 | 积炭容量 /g·g-1 cat | 积炭速率 /g·g-1·h-1 | ||
---|---|---|---|---|---|
液烃产能 /g·g-1 cat | 最高液烃收率 /% | 寿命 /h | |||
MZ | 6.2 | 19.8 | 20 | 0.11 | 5.3×10-3 |
MZ-AT | 62.8 | 24.0 | 96 | 0.35 | 3.6×10-3 |
Zn/MZ | 1.9 | 15.6 | 12 | 0.07 | 6.0×10-3 |
Zn/MZ-AT | 52.0 | 24.3 | 84 | 0.29 | 3.4×10-3 |
NZ | 237.4 | 28.9 | 149 | 0.32 | 2.2×10-3 |
NZ-AT | 197.2 | 28.7 | 132 | 0.29 | 2.2×10-3 |
Zn/NZ | 65.7 | 25.4 | 70 | 0.22 | 3.1×10-3 |
Zn/NZ-AT | 93.7 | 28.0 | 84 | 0.28 | 3.3×10-3 |
催化剂 | S BET ① /m2·g-1 | S mic ② /m2·g-1 | S ext ② /m2·g-1 | V total ③ /cm3·g-1 | V mic ② /cm3·g-1 | V meso ④ /cm3·g-1 |
---|---|---|---|---|---|---|
MZ | 14 | 0 | 14 | 0.06 | 0 | 0.06 |
MZ-AT | 48 | 6 | 42 | 0.14 | 0 | 0.14 |
Zn/MZ | 4 | 0 | 4 | 0.05 | 0 | 0.05 |
Zn/MZ-AT | 24 | 0 | 24 | 0.09 | 0 | 0.09 |
NZ | 189 | 119 | 70 | 0.37 | 0.05 | 0.32 |
NZ-AT | 199 | 129 | 70 | 0.40 | 0.06 | 0.34 |
Zn/NZ | 180 | 112 | 68 | 0.37 | 0.05 | 0.32 |
Zn/NZ-AT | 145 | 79 | 66 | 0.34 | 0.06 | 0.28 |
催化剂 | S BET ① /m2·g-1 | S mic ② /m2·g-1 | S ext ② /m2·g-1 | V total ③ /cm3·g-1 | V mic ② /cm3·g-1 | V meso ④ /cm3·g-1 |
---|---|---|---|---|---|---|
MZ | 14 | 0 | 14 | 0.06 | 0 | 0.06 |
MZ-AT | 48 | 6 | 42 | 0.14 | 0 | 0.14 |
Zn/MZ | 4 | 0 | 4 | 0.05 | 0 | 0.05 |
Zn/MZ-AT | 24 | 0 | 24 | 0.09 | 0 | 0.09 |
NZ | 189 | 119 | 70 | 0.37 | 0.05 | 0.32 |
NZ-AT | 199 | 129 | 70 | 0.40 | 0.06 | 0.34 |
Zn/NZ | 180 | 112 | 68 | 0.37 | 0.05 | 0.32 |
Zn/NZ-AT | 145 | 79 | 66 | 0.34 | 0.06 | 0.28 |
催化剂 | 苯/% | 甲苯/% | 二甲苯/% | BTX/% |
---|---|---|---|---|
MZ | 3.12 | 18.43 | 36.06 | 57.61 |
MZ-AT | 2.02 | 12.71 | 25.49 | 40.22 |
Zn/MZ | 3.32 | 25.75 | 37.78 | 66.85 |
Zn/MZ-AT | 2.01 | 17.81 | 28.81 | 48.63 |
NZ | 2.66 | 14.68 | 24.96 | 42.30 |
NZ-AT | 2.46 | 14.25 | 24.30 | 41.01 |
Zn/NZ | 2.16 | 18.53 | 30.18 | 50.87 |
Zn/NZ-AT | 2.10 | 18.00 | 29.46 | 49.56 |
催化剂 | 苯/% | 甲苯/% | 二甲苯/% | BTX/% |
---|---|---|---|---|
MZ | 3.12 | 18.43 | 36.06 | 57.61 |
MZ-AT | 2.02 | 12.71 | 25.49 | 40.22 |
Zn/MZ | 3.32 | 25.75 | 37.78 | 66.85 |
Zn/MZ-AT | 2.01 | 17.81 | 28.81 | 48.63 |
NZ | 2.66 | 14.68 | 24.96 | 42.30 |
NZ-AT | 2.46 | 14.25 | 24.30 | 41.01 |
Zn/NZ | 2.16 | 18.53 | 30.18 | 50.87 |
Zn/NZ-AT | 2.10 | 18.00 | 29.46 | 49.56 |
1 | 汪哲明, 陈希强, 许烽, 等 . 甲醇制芳烃催化剂研究进展[J]. 化工进展, 2016, 35(5): 1433-1439. |
WANG Z M , CHEN X Q , XU F , et al . Advance in the research and development of methanol to aromatic catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1433-1439. | |
2 | 陈庆龄, 杨为民, 滕加伟, 等 . 中国石化煤化工技术最新进展[J]. 催化学报, 2013, 34(1): 217-224. |
CHEN Q L , YANG W M , TENG J W , et al . Recent advances in coal to chemicals technology developed by Sinopec[J]. Chinese Journal of Catalysis, 2013, 34(1): 217-224. | |
3 | ZHANG G Q , TING B , CHEN T F , et al . Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932-14940. |
4 | FEI W , WEI Y X , GUO M X . Atomic layer deposition of zinc oxide on HZSM-5 template and its methanol aromatization performance[J]. Catalysis Letters, 2015, 145(3): 860-867. |
5 | LIANG T G , CHEN J L , QIN Z F , et al . Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting[J]. ACS Catalysis, 2016, 6(11): 7311-7325. |
6 | LOSCH P , PINAR A B , WILLINGER M G , et al . H-ZSM-5 zeolite model crystals: structure-diffusion-activity relationship in methanol-to-olefins catalysis[J]. Journal of Catalysis, 2017, 345: 11-23. |
7 | 潘红艳, 田敏, 何志艳, 等 . 甲醇制烯烃用ZSM-5分子筛的研究进展[J]. 化工进展, 2014, 33(10): 2625-2633. |
PAN H Y , TIAN M , HE Z Y , et al . Advances in research on modified ZSM-5 molecular sieves for conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2625-2633. | |
8 | FIROOZI M , BAGHALHA M , ASADI M . The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catalysis Communications, 2009, 10(12): 1582-1585. |
9 | NIU X J , GAO J , WANG K , et al . Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Processing Technology, 2017, 157: 99-107. |
10 | SHAO J , FU T J , CHANG J W , et al . Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 75-83. |
11 | XING L Y , WEI Z H , WEN Z H , et al . Catalytic study for methanol aromatization over hierarchical ZSM-5 zeolite synthesized by kaolin[J]. Petroleum Science & Technology, 2017, 35(24): 2235-2240. |
12 | FENG W , GAO X F , DING C M , et al . Effect of weak base modification on ZSM-5 catalyst for methanol to aromatics[J]. Applied Organometallic Chemistry, 2017, 31(6): 3625-3631. |
13 | QI R Y , FU T J , WAN W L , et al . Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction[J]. Fuel Processing Technology, 2016, 155: 191-199. |
14 | INOUE Y , NAKASHIRO K , ONO Y . Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites[J]. Microporous Materials, 1995, 4(5): 379-383. |
15 | TIAN T , QIAN W Z , TANG X P , et al . Deactivation of Ag/ZSM-5 catalyst in the aromatization of methanol[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3305-3309. |
16 | LOPEZ-SANCHEZ J A , CONTE M , LANDON P , et al . Reactivity of Ga2O3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics[J]. Catalysis Letters, 2012, 142(9): 1049-1056. |
17 | AL-YASSIR N , AKHTAR M N , OGUNRONBI K , et al . Synthesis of stable H-galloaluminosilicate MFI with hierarchical pore architecture by surfactant-mediated base hydrolysis, and their application in propane aromatization[J]. Journal of Molecular Catalysis A: Chemical, 2012, 360: 1-15. |
18 | MENTZEL U V , HOJHOLT K T , HOLM M S , et al . Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: major differences in deactivation behavior[J]. Applied Catalysis A: General, 2012, 417-418: 290-297. |
19 | WANG N , QIAN W , SHEN K , et al . Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst[J]. Chemical Communications, 2015, 52(10): 2011-2014. |
20 | XIN Y B , QI P Y , DUAN X P , et al . Enhanced performance of Zn-Sn/HZMS-5 catalyst for the conversion of methanol to aromatics[J]. Catalysis Letters, 2013, 143(8): 798-806. |
21 | COQUEBLIN H , RICHARD A , UZIO D , et al . Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization[J]. Catalysis Today, 2016, 289: 62-69. |
22 | NI Y M , SUN A M , WU X L , et al . The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous & Mesoporous Materials, 2011, 143(2/3): 435-442. |
23 | BI Y , WANG Y L , CHEN X , et al . Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chinese Journal of Catalysis, 2014, 35(10): 1740-1751. |
24 | NIU X J , GAO J , MIAO Q , et al . Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous & Mesoporous Materials, 2014, 197: 252-261. |
25 | WANG J Y , LI W H , HU J X . Study of methanol to aromatics on ZnHZSM-5 catalyst[J]. Journal of Fuel Chemistry & Technology, 2009, 37(5): 607-612. |
26 | ZHOU J , HUA Z L , L Z C, et al . Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties[J]. ACS Catalysis, 2011, 1(4): 287-291. |
27 | Jeongnam KIM , Minkee CHOI , Ryong RYOO . Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269(1): 219-228. |
28 | AHMADPOUR J , TAGHIZADEH M . Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates[J]. Journal of Natural Gas Science & Engineering, 2015, 23: 184-194. |
29 | WANG Y X , SONG J J , BAXTER N C , et al . Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties[J]. Journal of Catalysis, 2017, 349: 53-65. |
30 | GROEN J C , PEFFER L A , MOULIJN J A , et al . Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent[J]. Chemistry European Journal, 2005, 11(17): 4983-4994. |
31 | FU T J , CHANG J W , SHAO J , et al . Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline[J]. Journal of Energy Chemistry, 2017, 26(1): 139-146. |
32 | NI Y M , SUN A M , WU X L , et al . Aromatization of methanol over La/Zn/HZSM-5 catalysts[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 439-445. |
33 | WANG X X , ZHANG J F , ZHANG T , et al . Mesoporous ZnZSM-5 zeolites synthesized by onestep desilication and reassembly: a durable catalyst for methanol aromatization[J]. RSC Advances, 2016, 6(28): 23428-23437. |
34 | ZHANG J G , QIAN W Z , KONG C Y , et al . Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2982-2988. |
35 | ROWNAGHI A A , REZAEI F , HEDLUND J . Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size[J]. Catalysis Communications, 2011, 14(1): 37-41. |
36 | LI J H , TONG K , XI Z W , et al . Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catalysis Science & Technology, 2016, 6(13): 4802-4813. |
37 | 刘维桥, 雷卫宁, 尚通明, 等 . Zn对HZSM-5分子筛催化剂物化及甲醇芳构化反应性能的影响[J]. 化工进展, 2011, 30(9): 1967-1971. |
LIU W Q , LEI W N , SHANG T M , et al . Physicochemical and methanol aromatization property of HZSM-5 catalyst promoted by Zn[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1967-1971. | |
38 | YARIPOUR F , SHARIATINIA Z , SAHEBDELFAR S , et al . Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous & Mesoporous Materials, 2015, 203: 41-53. |
39 | PINILLA-HERRERO I , BORFECCHIA E , HOLZINGER J , et al . High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. Journal of Catalysis, 2018, 362: 146-163. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[4] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[5] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[6] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[7] | XIAO Yaoxin, ZHANG Jun, HU Sheng, SHAN Rui, YUAN Haoran, CHEN Yong. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. |
[8] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[9] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[10] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[11] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[12] | CHEN Xiaoyun, GUO Yadong, DI Lu, BI Dongmei, LI Kaikai, LIN Xiaona. Catalytic co-pyrolysis of biomass and plastic for aromatics production with boron doped activated carbon catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 199-209. |
[13] | SONG Shaotong, LYU Zhongwu, JIANG Zengkun, LI Yang, WU Pei, ZHANG Yalin, ZHANG Ran, CHEN Jinyang, JU Yana. Effect of ZSM-5/γ-Al2O3 mass ratio on isomerization/aromatization performance of FCC light gasoline [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 229-238. |
[14] | LIU Penglong, XU Xiongfei, ZHANG Wei, XU Xin, ZHANG Kan, WANG Junwen. Local modeling and optimization of K-means-PSO-SVR for methanol to aromatics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4691-4700. |
[15] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |