Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 6102-6114.DOI: 10.16085/j.issn.1000-6613.2025-0259
• Resources and environmental engineering • Previous Articles
ZHANG Juanjuan(
), LING Yu, LI Jiaxi, LIU Xueyu(
)
Received:2025-02-21
Revised:2025-04-10
Online:2025-11-10
Published:2025-10-25
Contact:
LIU Xueyu
通讯作者:
刘雪瑜
作者简介:张娟娟(1989—),女,博士,副研究员,研究方向为环境催化材料与水污染控制技术。E-mail:zhang.juanjuan@craes.org.cn。
基金资助:CLC Number:
ZHANG Juanjuan, LING Yu, LI Jiaxi, LIU Xueyu. Preparation of PI-g-C3N4 photocatalyst and its photocatalytic degradation performance of phenol[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6102-6114.
张娟娟, 凌裕, 黎佳茜, 刘雪瑜. PI-g-C3N4光催化剂的制备及其光催化降解苯酚性能[J]. 化工进展, 2025, 44(10): 6102-6114.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0259
| 催化剂类型 | 改性策略 | 降解率/% | 反应时间/min | 速率常数/min-1 | 主要改进机制 | 参考文献 |
|---|---|---|---|---|---|---|
| PI-g-C3N4 | PTCDA与g-C3N4酰胺反应复合 | 91 | 120 | 0.020 | S型电荷传输,增强界面电荷分离 | 本研究 |
| CoPC/g-C3N4 | 金属掺杂 | 82 | 240 | 0.015 | 窄化带隙,提升光响应范围 | [ |
| S/g-C3N4 | 非金属掺杂 | 56 | 90 | 0.009 | 窄化带隙,提升光响应范围 | [ |
| Bi2O3/g-C3N4 | 异质结复合 | 36.6 | 75 | 0.006 | 促进光生电子-空穴对分离 | [ |
| 催化剂类型 | 改性策略 | 降解率/% | 反应时间/min | 速率常数/min-1 | 主要改进机制 | 参考文献 |
|---|---|---|---|---|---|---|
| PI-g-C3N4 | PTCDA与g-C3N4酰胺反应复合 | 91 | 120 | 0.020 | S型电荷传输,增强界面电荷分离 | 本研究 |
| CoPC/g-C3N4 | 金属掺杂 | 82 | 240 | 0.015 | 窄化带隙,提升光响应范围 | [ |
| S/g-C3N4 | 非金属掺杂 | 56 | 90 | 0.009 | 窄化带隙,提升光响应范围 | [ |
| Bi2O3/g-C3N4 | 异质结复合 | 36.6 | 75 | 0.006 | 促进光生电子-空穴对分离 | [ |
| [1] | WANG Jiayu, CHAN Faith Ka Shun, JOHNSON Matthew F, et al. Material cycles, environmental emissions, and ecological risks of bisphenol A (BPA) in China and implications for sustainable plastic management[J]. Environmental Science & Technology, 2025, 59(3): 1631-1646. |
| [2] | WANG Jiacheng, ZHANG Lidan, HE Yujie, et al. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2024, 469: 133906. |
| [3] | VASILJEVIC Tijana, HARNER Tom. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels[J]. Science of the Total Environment, 2021, 789: 148013. |
| [4] | 高鹏, 徐璐, 辛宁, 等. 焦化废水污染控制技术研究进展[J]. 环境工程技术学报, 2016, 6(4): 357-362. |
| GAO Peng, XU Lu, XIN Ning, et al. Advances in research on coking wastewater control technologies[J]. Journal of Environmental Engineering Technology, 2016, 6(4): 357-362. | |
| [5] | YUE Bin, ZHOU Yan, XU Jingyu, et al. Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates[J]. Environmental Science & Technology, 2002, 36(6): 1325-1329. |
| [6] | CHEN Sha, HUANG Danlian, ZENG Guangming, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840. |
| [7] | YU Fang, TIAN Fengyu, ZOU Haowen, et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue[J]. Journal of Hazardous Materials, 2021, 415: 125511. |
| [8] | 周永, 江芳, 张晋华, 等. 载银TiO2纳米管的制备及其光催化降解硝基苯废水[J]. 环境工程技术学报, 2012, 2(6): 480-484. |
| ZHOU Yong, JIANG Fang, ZHANG Jinhua, et al. Preparation of Ag-doped titania nanotube and its photocatalytic degradation performance for nitrobenzene wastewater[J]. Journal of Environmental Engineering Technology, 2012, 2(6): 480-484. | |
| [9] | 马香港, 丁远, 张俊格, 等. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292. |
| MA Xianggang, DING Yuan, ZHANG Junge, et al. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. | |
| [10] | CHONG Mengnan, JIN Bo, CHOW Christopher W K, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010, 44(10): 2997-3027. |
| [11] | WANG Yimeng, MA Hecheng, LIU Jianjun, et al. Broad-spectrum hybrid-driven triple-interface Z-Scheme 1T/2H phase sailboat-like molybdenum disulfide (MoS2)/protonated N-defect nanoporous graphitic carbon nitride (g-C3N4) nanosheets piezo-photocatalyst: Superior degradation and hydrogen evolution[J]. Journal of Colloid and Interface Science, 2024, 665: 655-680. |
| [12] | 曾军建, 杜轶君, 何静, 等. 石墨相氮化碳的制备及在染料降解膜中的应用进展[J]. 化工进展, 2025, 44(10): 5899-5910. |
| ZENG Junjian, DU Yijun, HE Jing, et al. Progress in the synthesis of graphitic carbon nitride and its application in dye degradation membranes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5899-5910. | |
| [13] | TAN Yushan, CHEN Weirui, LIAO Gaozu, et al. Role of metal-N-C electron transport channel within g-C3N4 for promoting water purification of photocatalytic ozonation[J]. Applied Catalysis B: Environment and Energy, 2024, 351: 124005. |
| [14] | 宋亚丽, 李紫燕, 杨彩荣, 等. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309. |
| SONG Yali, LI Ziyan, YANG Cairong, et al. Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309. | |
| [15] | YOU Qinglun, ZHANG Chunsheng, CAO Min, et al. Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production[J]. Applied Catalysis B: Environmental, 2023, 321: 121941. |
| [16] | 黄建辉, 林文婷, 谢丽燕, 等. 石墨相氮化碳-碘氧化铋层状异质结的构建及其光催化杀菌性能[J]. 环境科学, 2017, 38(9): 3979-3986. |
| HUANG Jianhui, LIN Wenting, XIE Liyan, et al. Construction of graphitic carbon nitride-bismuth oxyiodide layered heterostructures and their photocatalytic antibacterial performance[J]. Environmental Science, 2017, 38(9): 3979-3986. | |
| [17] | CHEN Long, MAIGBAY Michael A, LI Miao, et al. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Advanced Powder Materials, 2024, 3(1): 100150. |
| [18] | ZHANG Juanjuan, ZHAO Xu, WANG Yanbin, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 [J]. Applied Catalysis B: Environmental, 2018, 237: 976-985. |
| [19] | ZHAO Feiping, LIU Yongpeng, HAMMOUDA Samia BEN, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(Ⅵ) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B: Environmental, 2020, 272: 119033. |
| [20] | ROBB Maxwell J, NEWTON Brandon, FORS Brett P, et al. One-step synthesis of unsymmetrical N-alkyl-N’-aryl perylene diimides[J]. The Journal of Organic Chemistry, 2014, 79(13): 6360-6365. |
| [21] | NAGARAJAN Kalaivanan, MALLIA Ajith R, MURALEEDHARAN Keerthi, et al. Enhanced intersystem crossing in core-twisted aromatics[J]. Chemical Science, 2017, 8(3): 1776-1782. |
| [22] | AVLASEVICH Yuri, LI Chen, Klaus MÜLLEN. Synthesis and applications of core-enlarged perylene dyes[J]. Journal of Materials Chemistry, 2010, 20(19): 3814-3826. |
| [23] | WEI Yunxia, MA Mingguang, LI Wenlu, et al. Enhanced photocatalytic activity of PTCDI-C60 via π-π interaction[J]. Applied Catalysis B: Environmental, 2018, 238: 302-308. |
| [24] | DONG Guohui, YANG Liping, WANG Fu, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides[J]. ACS Catalysis, 2016, 6(10): 6511-6519. |
| [25] | 朱娜, 王星阳, 焦俊恒, 等. 基于g-C3N4研究环境中甲氧苄啶的光降解行为及其毒性[J]. 环境科学, 2022, 43(12): 5832-5839. |
| ZHU Na, WANG Xingyang, JIAO Junheng, et al. Photodegradation behaviors and toxicity characteristics of trimethoprim into different environmental media with the presence of g-C3N4 [J]. Environmental Science, 2022, 43(12): 5832-5839. | |
| [26] | DONG Guohui, ZHANG Lizhi. Synthesis and enhanced Cr(Ⅵ) photoreduction property of formate anion containing graphitic carbon nitride[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4062-4068. |
| [27] | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
| [28] | 马晓明, 信帅帅, 张春蕾, 等. g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯[J]. 环境科学学报, 2022, 42(8): 166-178. |
| MA Xiaoming, XIN Shuaishuai, ZHANG Chunlei, et al. Preparation of g-C3N4/TiO2 nanotube arrays photoanode for photoelectrocatalytic degradation of o-chloronitrobenzene[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 166-178. | |
| [29] | TANG Dandan, ZHANG Gaoke. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance[J]. Applied Surface Science, 2017, 391: 415-422. |
| [30] | 白佳琦, 崔雨琦, 唐清文, 等. 石墨相氮化碳光催化剂的制备、改性及其在水处理中的应用[J]. 环境科学学报, 2022, 42(2): 69-80. |
| BAI Jiaqi, CUI Yuqi, TANG Qingwen, et al. Preparation and modification of graphite-phase carbon nitride photocatalyst and its application in water treatment[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 69-80. | |
| [31] | 赵卫峰, 郝宁, 张改, 等. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106. |
| ZHAO Weifeng, HAO Ning, ZHANG Gai, et al. Perylene tetracarboxylic bisimide decorated g-C3N4 with enhanced photocatalytic activity[J]. Journal of Materials Engineering, 2022, 50(3): 98-106. | |
| [32] | DING Dr Zhengxin, CHEN Xiufang, ANTONIETTI Prof Markus, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem, 2011, 4(2): 274-281. |
| [33] | HUANG Zeai, SUN Qiong, LV Kangle, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2 [J]. Applied Catalysis B: Environmental, 2015, 164: 420-427. |
| [34] | QIN Zongyi, ZHANG Jin, ZHOU Hong, et al. Degradation of polyimide induced by nitrogen laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 170(3/4): 406-412. |
| [35] | RANGAN Sylvie, RUGGIERI Charles, BARTYNSKI Robert, et al. Adsorption geometry and energy level alignment at the PTCDA/TiO2(110) interface[J]. The Journal of Physical Chemistry B, 2018, 122(2): 534-542. |
| [36] | LI Jianghua, SHEN Biao, HONG Zhenhua, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019. |
| [37] | LI Yuhan, Wingkei HO, Kangle LYU, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Applied Surface Science, 2018, 430: 380-389. |
| [38] | DONG Shuying, XIA Longji, GUO Teng, et al. Controlled synthesis of flexible graphene aerogels macroscopic monolith as versatile agents for wastewater treatment[J]. Applied Surface Science, 2018, 445: 30-38. |
| [39] | WU Fei, HUANG Huawang, XU Tiefeng, et al. Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine[J]. Applied Catalysis B: Environmental, 2017, 218: 230-239. |
| [40] | MITRA Anuradha, HOWLI Promita, Dipayan SEN, et al. Cu2O/g-C3N4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies[J]. Nanoscale, 2016, 8(45): 19099-19109. |
| [41] | LU Jinsuo, WANG Yujing, LIU Fei, et al. Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances[J]. Applied Surface Science, 2017, 393(1): 180-190. |
| [42] | HUANG Hongwei, LI Xiaowei, WANG Jinjian, et al. Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO3 2--doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5(7): 4094-4103. |
| [43] | DONG Guohui, Wingkei HO, LI Yuhan, et al. Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal[J]. Applied Catalysis B: Environmental, 2015, 174-175: 477-485. |
| [44] | 贾建岗, 何淑媛. CoPC/g-C3N4的制备及其光催化降解苯酚性能研究[J]. 现代化工, 2024, 44(10): 180-185. |
| JIA Jiangang, HE Shuyuan. Preparation of CoPC/g-C3N4and study on its performance in photocatalytic degradation of phenol[J]. Modern Chemical Industry, 2024, 44(10): 180-185. | |
| [45] | Haiqin LYU, HUANG Ying, KOODALI Ranjit T, et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12656-12667. |
| [46] | WANG Qi, LI Ningyi, TAN Meng, et al. Novel dual Z-scheme Bi/BiOI-Bi2O3-C3N4 heterojunctions with synergistic boosted photocatalytic degradation of phenol[J]. Separation and Purification Technology, 2023, 307: 122733. |
| [47] | XU Kaijie, CUI Kangping, CUI Minshu, et al. Carbonyl heterocycle modified mesoporous carbon nitride in photocatalytic peroxydisulfate activation for enhanced ciprofloxacin removal: Performance and mechanism[J]. Journal of Hazardous Materials, 2023, 444: 130412. |
| [48] | 李亚男, 郭凯, 王嘉琪, 等. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
| LI Yanan, GUO Kai, WANG Jiaqi, et al. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. | |
| [49] | LAU Tim K, CHU Wei, GRAHAM Nigel J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O8 2-: Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science and Technology, 2007, 41(2): 613-619. |
| [50] | 张少朋, 陈瑀, 白淑琴, 等. 氯氧铁非均相催化过氧化氢降解罗丹明B[J]. 环境科学, 2019, 40(11): 5009-5014. |
| ZHANG Shaopeng, CHEN Yu, BAI Shuqin, et al. Catalytic degradation of rhodamine B by FeOCl activated hydrogen peroxide[J]. Environmental Science, 2019, 40(11): 5009-5014. | |
| [51] | FANG Guodong, DIONYSIOU Dionysios D, AL-ABED Souhail R, et al. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs[J]. Applied Catalysis B: Environmental, 2013, 129: 325-332. |
| [52] | DONG Shuying, CUI Yanrui, WANG Yifei, et al. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater[J]. Chemical Engineering Journal, 2014, 249: 102-110. |
| [1] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [2] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [3] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [4] | ZENG Junjian, DU Yijun, HE Jing, XUE Lixin. Progress in the synthesis of graphitic carbon nitride and its application in dye degradation membranes [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5899-5910. |
| [5] | ZHAO Wenwu, LIU Jinqiang, ZHOU Haijing, LIU Jian, HAO Bin. Synthesis of layered Bi2WO6 and mechanism of oxygen vacancy in photodegradation of TC [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5859-5870. |
| [6] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
| [7] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| [8] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
| [9] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
| [10] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
| [11] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
| [12] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
| [13] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
| [14] | GENG Qijin, CUI Wenwen, LIU Ying, YANG Jinmei, WANG Yuanfang, YANG Hualei, DING Jiazhong, ZANG Jiaxing, SUN Houwei. Evaluation method for dynamic scale of photocatalytic fluidized agglomerates [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6583-6588. |
| [15] | MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |