Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7126-7134.DOI: 10.16085/j.issn.1000-6613.2024-2080
• Materials science and technology • Previous Articles
Received:2024-12-23
Revised:2025-03-24
Online:2026-01-06
Published:2025-12-25
Contact:
SUN Zhigao
通讯作者:
孙志高
作者简介:张万鑫(1997—),男,硕士研究生,研究方向为储能技术。E-mail:xiyixian@126.com。
基金资助:CLC Number:
ZHANG Wanxin, SUN Zhigao. Preparation and properties of TDA-HDA/SiO2 phase change microcapsules with graphene[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7126-7134.
张万鑫, 孙志高. 石墨烯复合TDA-HDA/SiO2相变微胶囊的制备及性能[J]. 化工进展, 2025, 44(12): 7126-7134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2080
| 试剂名称 | 纯度规格(质量分数) | 生产厂家 |
|---|---|---|
| 十四胺(TDA) | ≥96% | Aladdin |
| 十六胺(HDA) | ≥90% | Aladdin |
| 硅酸四乙酯(TEOS) | 99% | Aladdin |
| 3-氨丙基-3-乙氧基硅烷(APTES) | 99% | Aladdin |
| 异丙醇(IPA) | ≥99.7% | Aladdin |
| 浓盐酸 | 分析纯 | Aladdin |
| 无水乙醇(EtOH) | ≥99.7% | 强盛功能化学股份有限公司 |
| 氨水(NH3·H2O) | 28% | Aladdin |
| 石墨烯纳米颗粒 | <10μm,单层片状,比表面积400~550m2/g | 上海巷田纳米材料有限公司 |
| 试剂名称 | 纯度规格(质量分数) | 生产厂家 |
|---|---|---|
| 十四胺(TDA) | ≥96% | Aladdin |
| 十六胺(HDA) | ≥90% | Aladdin |
| 硅酸四乙酯(TEOS) | 99% | Aladdin |
| 3-氨丙基-3-乙氧基硅烷(APTES) | 99% | Aladdin |
| 异丙醇(IPA) | ≥99.7% | Aladdin |
| 浓盐酸 | 分析纯 | Aladdin |
| 无水乙醇(EtOH) | ≥99.7% | 强盛功能化学股份有限公司 |
| 氨水(NH3·H2O) | 28% | Aladdin |
| 石墨烯纳米颗粒 | <10μm,单层片状,比表面积400~550m2/g | 上海巷田纳米材料有限公司 |
| 名称 | 型号 | 精度 | 测量范围 |
|---|---|---|---|
| 赛多利斯电子天平 | BSA224S | ±0.1mg | 0~220g |
| 数控超声波清洗器 | KQ100DE | — | RT+10~80℃ |
| 微电热恒温水槽 | THD-2015 | ±0.1℃ | -20~99℃ |
| 差示扫描量热仪 | TA Instrements DSC2010 | — | -180~725℃ |
| 傅里叶红外光谱仪 | 美国Thermo Scientific Nicolet iN10 | — | 4000~400cm-1 |
| 真空干燥箱 | BZF-30 | ±0.5℃ | RT+2~250℃ |
| 扫描电子显微镜 | TA Instrements DSC2010 | — | -180~725℃ |
| 多功能热导率测定仪 | DRE-Ⅲ | ≤3% | 0.005~50W/(m·K) |
| X射线光电子能谱仪(XPS) | 美国Thermo Scientific K-Alpha | — | 0~1400eV |
| 台式酸度计 | pHS-3C | 精度±0.05 | 5~60℃,pH0~14 |
| 名称 | 型号 | 精度 | 测量范围 |
|---|---|---|---|
| 赛多利斯电子天平 | BSA224S | ±0.1mg | 0~220g |
| 数控超声波清洗器 | KQ100DE | — | RT+10~80℃ |
| 微电热恒温水槽 | THD-2015 | ±0.1℃ | -20~99℃ |
| 差示扫描量热仪 | TA Instrements DSC2010 | — | -180~725℃ |
| 傅里叶红外光谱仪 | 美国Thermo Scientific Nicolet iN10 | — | 4000~400cm-1 |
| 真空干燥箱 | BZF-30 | ±0.5℃ | RT+2~250℃ |
| 扫描电子显微镜 | TA Instrements DSC2010 | — | -180~725℃ |
| 多功能热导率测定仪 | DRE-Ⅲ | ≤3% | 0.005~50W/(m·K) |
| X射线光电子能谱仪(XPS) | 美国Thermo Scientific K-Alpha | — | 0~1400eV |
| 台式酸度计 | pHS-3C | 精度±0.05 | 5~60℃,pH0~14 |
| 样品编号 | TEOS/g | TDA-HDA/g | 去离子水量/mL | 石墨烯、芯材质量分数/% | pH |
|---|---|---|---|---|---|
| T1 | 1 | 10 | 10 | 0.05 | 7 |
| T2 | 3 | 10 | 10 | 0 | 7 |
| T3 | 5 | 10 | 10 | 0.05 | 7 |
| T4 | 3 | 10 | 5 | 0 | 7 |
| T5 | 3 | 10 | 15 | 0 | 7 |
| T6 | 3 | 10 | 10 | 0.1 | 7 |
| T7 | 3 | 10 | 10 | 0.05 | 7 |
| 样品编号 | TEOS/g | TDA-HDA/g | 去离子水量/mL | 石墨烯、芯材质量分数/% | pH |
|---|---|---|---|---|---|
| T1 | 1 | 10 | 10 | 0.05 | 7 |
| T2 | 3 | 10 | 10 | 0 | 7 |
| T3 | 5 | 10 | 10 | 0.05 | 7 |
| T4 | 3 | 10 | 5 | 0 | 7 |
| T5 | 3 | 10 | 15 | 0 | 7 |
| T6 | 3 | 10 | 10 | 0.1 | 7 |
| T7 | 3 | 10 | 10 | 0.05 | 7 |
| 材料 | 融化温度/℃ | 融化焓值/J·g-1 | 凝固温度/℃ | 凝固焓值/J·g-1 | 熔化峰值温度/℃ | 凝固峰值温度/℃ |
|---|---|---|---|---|---|---|
| TDA-HDA | 27.02 | 252.7 | 21.56 | 249.0 | 30.88 | 21.79 |
| TDA-HDA/SiO2 | 26.22 | 136.2 | 22.39 | 144.3 | 29.72 | 20.16 |
| TDA-HDA/SiO2/石墨烯 | 26.31 | 147.4 | 23.46 | 147.7 | 30.11 | 21.53 |
| 材料 | 融化温度/℃ | 融化焓值/J·g-1 | 凝固温度/℃ | 凝固焓值/J·g-1 | 熔化峰值温度/℃ | 凝固峰值温度/℃ |
|---|---|---|---|---|---|---|
| TDA-HDA | 27.02 | 252.7 | 21.56 | 249.0 | 30.88 | 21.79 |
| TDA-HDA/SiO2 | 26.22 | 136.2 | 22.39 | 144.3 | 29.72 | 20.16 |
| TDA-HDA/SiO2/石墨烯 | 26.31 | 147.4 | 23.46 | 147.7 | 30.11 | 21.53 |
| 材料 | 热导率/W·m-1·K-1 |
|---|---|
| TDA-HDA | 0.26 |
| TDA-HDA/SiO2 | 0.15 |
| TDA-HDA/SiO2/石墨烯 | 0.28 |
| 材料 | 热导率/W·m-1·K-1 |
|---|---|
| TDA-HDA | 0.26 |
| TDA-HDA/SiO2 | 0.15 |
| TDA-HDA/SiO2/石墨烯 | 0.28 |
| [1] | 林浩楠. 相变储热材料的研究进展[J]. 冶金与材料, 2021, 41(6): 41-42. |
| LIN Haonan. Research progress of phase change heat storage materials[J]. Metallurgy and Materials, 2021, 41(6): 41-42. | |
| [2] | MUSHTAQ Hasan, HADI Basher, AHMED Shdhan. Experimental investigation of phase change materials for insulation of residential buildings[J]. Sustainable Cities and Society, 2018, 36: 42-58. |
| [3] | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. |
| LENG Guanghui, CAO Hui, PENG Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. | |
| [4] | SINGH P, SHARMA R K, ANSU A K, et al. A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications[J]. Solar Energy Materials & Solar Cells, 2021, 223: 110955. |
| [5] | NING Zhaozhong, ZHANG Xuelai, JI Jun, et al. Research progress of phase change thermal storage technology in air-source heat pump[J]. Journal of Energy Storage, 2023, 64: 107114. |
| [6] | 张锦涛, 尹冠生, 史明辉, 等. 癸酸-十六醇/气相二氧化硅定型复合相变材料的制备及性能表征[J]. 功能材料, 2021, 52(12): 12143-12151. |
| ZHANG Jintao, YIN Guansheng, SHI Minghui, et al. Preparation and performance characterization of decanoic acid-hexadecanol/fumed silica phase change composita materials [J]. Journal of Functional Materials, 2021, 52(12): 12143-12151. | |
| [7] | HUANG Zhiguo, SUN Zhigao. Preparation and thermal properties of nano-microcapsule and simulation heat storage application[J]. Applied Thermal Engineering, 2024, 246: 123018. |
| [8] | 颉江龙, 魏霞. 相变储能材料在建筑节能中的研究进展与应用[J]. 现代化工, 2019, 39(11): 48-52. |
| XIE J L, WEI X. Research progress in phase change energy storage materials and application in buildings energy saving[J]. Modern Chemical Industry, 2019, 39(11): 48-52. | |
| [9] | 伏舜宇, 沈仲华, 杨英英, 等. 相变材料应用于建筑围护结构中定型封装方法研究进展[J]. 化工新型材料, 2021, 49(11): 222-228. |
| FU Shunyu, SHEN Zhonghua, YANG Yingying, et al. A review of packaging method for phase change material in building envelope[J]. New Chemical Materials, 2021, 49(11): 222-228. | |
| [10] | ZHANG Shengqi, SIMONE Mancin, PU Liang. A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage[J]. Journal of Energy Storage, 2023, 62: 106825. |
| [11] | 朱建平, 侯欢欢, 田梦迪, 等. 相变微胶囊制备方法研究进展[J]. 化工新型材料, 2016, 44(8): 1-3. |
| ZHU Jianping, HOU Huanhuan, TIAN Mengdi, et al. Research progress on the preparation of phase change material microcapsule[J]. New Chemical Materials, 2016, 44(8): 1-3. | |
| [12] | 王大程, 谭淑娟, 徐国跃, 等. 硬脂酸/碳纳米管/聚甲基丙烯酸甲酯复合相变胶囊的制备与热性能研究[J]. 太阳能学报, 2019, 40(1): 24-29. |
| WANG Dacheng, TAN Shujuan, XU Guoyue, et al. Preparation and thermal properties of stearic acid/α-CNT/PMMA composite microencapsulated phase change capsules[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 24-29. | |
| [13] | 余煜玺, 贾嫣婷, 黄柳英, 等. 低温SiO2气凝胶基复合相变材料的制备与性能分析[J]. 材料工程, 2022, 50(8): 115-123. |
| YU Yuxi, Yanting JA, HUANG Liuying, et al. Preparation and performance analysis of low-temperature SiO2 aerogel-based phase change compsites[J]. Journal of Materials Engineering, 2022, 50(8): 115-123. | |
| [14] | 李洁, 张佳, 付明琴, 等. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(S2): 483-487. |
| LI Jie, ZHANG Jia, FU Mingqin, et al. Study on the performance of organic base binary stereotyped composite phase change material supported by mesoporous SiO2 [J]. Materials Reports, 2021, 35(S2): 483-487. | |
| [15] | ZHAN Shiping, CHEN Shuhua, CHEN Li, et al. Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method[J]. Powder Technology, 2016, 292: 217-222. |
| [16] | 张万鑫, 孙志高. TDA-HDA/膨胀石墨复合相变材料的制备及性能研究[J]. 功能材料, 2023, 54(3): 3106-3112. |
| ZHANG Wanxin, SUN Zhigao. Preparation and properties of TDA-HDA/expanded graphite composite phase change materials[J]. New Chemical Materials, 2023, 54(3): 3106-3112. | |
| [17] | 孙希萍. 原位封装十六胺及聚乙二醇复合定形相变储能材料的研究[D]. 温州: 温州大学, 2020. |
| SUN Xiping. Investigation on hexadecylamine and polyethylene glycol based shape stabilized composite phase change materials for energy storage through in-situ nano-encapsulation[D]. Wenzhou: Wenzhou University, 2020. | |
| [18] | CHEN Tao, SUN Hanxue, MU Peng, et al. Fatty amines as a new family of organic phase change materials with exceptionally high energy density[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110340. |
| [19] | 王成君. 几种脂肪胺/微纳结构碳复合相变材料的制备及性能研究[D]. 兰州: 兰州理工大学, 2021. |
| WANG Chengjun. Preparation and properties of fatty amine/micronano-structured carbon composite phase change materials[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
| [20] | 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
| ZHOU Sunxi, ZHANG Xuelai, LIU Sheng, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297. | |
| [21] | ZHANG Guanhua, CHEN Licheng, LU Wei, et al. Production of ternary organic phase change material combined with expanded graphite and its application in cold chain transportation[J]. Thermal Science and Engineering Progress, 2023, 46: 102204. |
| [22] | SUN Lijuan, SHENG Linfeng, WANG Jingjing, et al. Hexadecylamine@silica nanocapsule with excellent operational reliability for thermal energy storage[J]. Energy Repots, 2022, 8: 8874-8882. |
| [23] | 鲁进利, 吴丽, 韩亚芳, 等. 氧化石墨烯改性的正十二烷醇相变微胶囊的制备及性能测试[J]. 过程工程学报, 2021, 21(2): 202-209. |
| LU Jinli, WU Li, HAN Yafang, et al. Preparation and characterization of graphene oxide modified n-dodecanol phase change microcapsules[J]. The Chinese Journal of Process Engineering, 2021, 21(2): 202-209. | |
| [24] | 邱庆龄. 纳米TiO2改性复合相变微胶囊的制备及热性能研究[J]. 功能材料, 2020, 51(10): 10216-10220. |
| QIU Qingling. Preparation and thermal properties of nano-TiO2 modified composite phase change microcapsule[J]. New Chemical Materials, 2020, 51(10): 10216-10220. | |
| [25] | 马晓春, 刘函, 陈晨, 等. 石蜡@SnO2-Al2O3微胶囊复合相变材料的合成及其热物性[J]. 浙江工业大学学报, 2020, 48(5): 490-494. |
| MA Xiaochun, LIU Han, CHEN Chen, et al. Synthesis and thermal physical properties of paraffin@SnO2-Al2O3 microcapsule composite phase change material [J]. Journal of Zhejiang University of Technology, 2020, 48(5): 490-494. | |
| [26] | 李佳玉, 王信刚, 雷宇轩, 等. Nano-Al2O3改性石蜡相变微胶囊的热性能及作用机理[J]. 南昌大学学报(理科版), 2023, 47(2): 141-147. |
| LI Jiayu, WANG Xingang, LEI Yuxuan, et al. Thermal properties and mechanism of paraffin phase change microcapsules modified with nano-Al2O3 [J]. Journal of Nanchang University (Natural Science), 2023, 47(2): 141-147. | |
| [27] | 吴学红, 王凯, 王强伟, 等, 氧化石墨烯复合相变微胶囊制备及传热特性研究 [J]. 工程热物理学报, 2023, 44(12): 3414-3419. |
| WU Xuehong, WANG Kai, WANG Qiangwei, et al. Preparation and heat transfer characteristics of graphene oxide composite phase change microcapsules[J]. Journal of Engineering Thermophysics, 2023, 44(12): 3414-3419. |
| [1] | WU Gang, SHEN Zhenhua, JIAO Feng, HE Yongqing. Characterization of melting heat transfer properties of metal-foam composite phase change materials under non-uniform heat flow [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 388-399. |
| [2] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [3] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [4] | ZUO Qibin, ZHANG Han, SUN Chuanfu, HU Guilin, XIA Yuzhen. Application of nickel/graphene coating on foam metal flow field of PEMFC [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5195-5201. |
| [5] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [6] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [7] | HU Liang, ZHANG Kaiyue, GAO Bo, ZHANG Zhibin, LIU Zhuang, FU Haiyang, TANG Yiqiao, YANG Yuanyuan. Application of graphene and functionalized graphene in the field of energy storage [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5055-5074. |
| [8] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [9] | HAO Yaling, LI Chunli, ZHOU Nan, CHENG Jiahao, WANG Jiarui, HUO Rong, WANG Delong, YANG Peng. Preparation and electrochemical performance of graphene electrode materials doped with different nitrogen sources [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5150-5160. |
| [10] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [11] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [12] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [13] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [14] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [15] | AN Mingze, ZHANG Bingbing, WANG Sheng, CHEN Weijie, LIU Shiwang, XUE Bin, XU Guomin, QIN Shuhao. Research progress on carbon-based stereotyped composite phase change materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2102-2118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |
