Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5150-5160.DOI: 10.16085/j.issn.1000-6613.2024-1158
• Materials science and technology • Previous Articles
HAO Yaling1(
), LI Chunli1,2(
), ZHOU Nan1, CHENG Jiahao1, WANG Jiarui1, HUO Rong1, WANG Delong1, YANG Peng1
Received:2024-07-18
Revised:2024-09-11
Online:2025-09-30
Published:2025-09-25
Contact:
LI Chunli
郝亚玲1(
), 李春丽1,2(
), 周楠1, 程佳豪1, 王佳瑞1, 霍蓉1, 王德龙1, 杨鹏1
通讯作者:
李春丽
作者简介:郝亚玲(2000—),女,硕士研究生,研究方向为氧化石墨烯制备及改性。E-mail:2594463569@qq.com。
基金资助:CLC Number:
HAO Yaling, LI Chunli, ZHOU Nan, CHENG Jiahao, WANG Jiarui, HUO Rong, WANG Delong, YANG Peng. Preparation and electrochemical performance of graphene electrode materials doped with different nitrogen sources[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5150-5160.
郝亚玲, 李春丽, 周楠, 程佳豪, 王佳瑞, 霍蓉, 王德龙, 杨鹏. 不同氮源掺杂石墨烯电极材料的制备及电化学性能[J]. 化工进展, 2025, 44(9): 5150-5160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1158
| 样品 | C质量分数/% | O质量分数/% | N质量分数/% | C/O |
|---|---|---|---|---|
| GO | 67.13 | 32.87 | — | 2.04 |
| GA | 84.29 | 14.21 | — | 5.93 |
| Asp-NGA | 85.65 | 11.47 | 2.89 | 7.47 |
| DA-NGA | 82.11 | 13.33 | 4.56 | 6.16 |
| 2-APy-NGA | 82.43 | 12.43 | 5.14 | 6.63 |
| 2-MI-NGA | 81.75 | 12.74 | 5.51 | 6.42 |
| 样品 | C质量分数/% | O质量分数/% | N质量分数/% | C/O |
|---|---|---|---|---|
| GO | 67.13 | 32.87 | — | 2.04 |
| GA | 84.29 | 14.21 | — | 5.93 |
| Asp-NGA | 85.65 | 11.47 | 2.89 | 7.47 |
| DA-NGA | 82.11 | 13.33 | 4.56 | 6.16 |
| 2-APy-NGA | 82.43 | 12.43 | 5.14 | 6.63 |
| 2-MI-NGA | 81.75 | 12.74 | 5.51 | 6.42 |
| 样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
|---|---|---|---|---|---|---|---|
| 吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
| Asp-NGA | 2.89 | 0.81 | 1.78 | 0.30 | 28.03 | 61.60 | 10.37 |
| DA-NGA | 4.56 | 1.41 | 2.35 | 0.8 | 30.92 | 51.54 | 17.54 |
| 2-APy-NGA | 5.14 | 3.57 | 0.9 | 0.67 | 69.46 | 17.51 | 13.03 |
| 2-MI-NGA | 5.51 | 1.83 | 3.35 | 0.33 | 33.21 | 60.80 | 5.99 |
| 样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
|---|---|---|---|---|---|---|---|
| 吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
| Asp-NGA | 2.89 | 0.81 | 1.78 | 0.30 | 28.03 | 61.60 | 10.37 |
| DA-NGA | 4.56 | 1.41 | 2.35 | 0.8 | 30.92 | 51.54 | 17.54 |
| 2-APy-NGA | 5.14 | 3.57 | 0.9 | 0.67 | 69.46 | 17.51 | 13.03 |
| 2-MI-NGA | 5.51 | 1.83 | 3.35 | 0.33 | 33.21 | 60.80 | 5.99 |
| 样品名称 | 2θ/(°) | d/Å |
|---|---|---|
| GO | 11.188 | 7.94 |
| GA | 25.97 | 3.42 |
| Asp-NGA | 25.70 | 3.47 |
| DA-NGA | 24.46 | 3.63 |
| 2-APy-NGA | 24.33 | 3.65 |
| 2-MI-NGA | 24.2 | 3.67 |
| 样品名称 | 2θ/(°) | d/Å |
|---|---|---|
| GO | 11.188 | 7.94 |
| GA | 25.97 | 3.42 |
| Asp-NGA | 25.70 | 3.47 |
| DA-NGA | 24.46 | 3.63 |
| 2-APy-NGA | 24.33 | 3.65 |
| 2-MI-NGA | 24.2 | 3.67 |
| 名称 | 峰值电流比Ipa/Ipc | 峰电位差ΔEp/V | 内阻Rs/Ω·cm-2 | 电荷转移电阻Rct/Ω·cm-2 | 低频区斜线斜率 |
|---|---|---|---|---|---|
| GA | 2.14 | 0.88 | 2.34 | 172.86 | 1.09 |
| Asp-NGA | 1.75 | 0.84 | 2.15 | 140.52 | 1.25 |
| DA-NGA | 1.80 | 0.86 | 2.03 | 122.47 | 1.72 |
| 2-APy-NGA | 1.63 | 0.82 | 1.96 | 110.86 | 1.98 |
| 2-MI-NGA | 1.42 | 0.78 | 1.92 | 91.92 | 6.65 |
| 名称 | 峰值电流比Ipa/Ipc | 峰电位差ΔEp/V | 内阻Rs/Ω·cm-2 | 电荷转移电阻Rct/Ω·cm-2 | 低频区斜线斜率 |
|---|---|---|---|---|---|
| GA | 2.14 | 0.88 | 2.34 | 172.86 | 1.09 |
| Asp-NGA | 1.75 | 0.84 | 2.15 | 140.52 | 1.25 |
| DA-NGA | 1.80 | 0.86 | 2.03 | 122.47 | 1.72 |
| 2-APy-NGA | 1.63 | 0.82 | 1.96 | 110.86 | 1.98 |
| 2-MI-NGA | 1.42 | 0.78 | 1.92 | 91.92 | 6.65 |
| 电极材料 | 充电电压/V | 放电电压/V | 过电位/V | 放电容量/mA·h |
|---|---|---|---|---|
| CF | 1.46 | 1.26 | 0.2 | 816 |
| GA@CF | 1.40 | 1.32 | 0.08 | 968 |
| 2-MI-NGA@CF | 1.37 | 1.35 | 0.02 | 1057 |
| 电极材料 | 充电电压/V | 放电电压/V | 过电位/V | 放电容量/mA·h |
|---|---|---|---|---|
| CF | 1.46 | 1.26 | 0.2 | 816 |
| GA@CF | 1.40 | 1.32 | 0.08 | 968 |
| 2-MI-NGA@CF | 1.37 | 1.35 | 0.02 | 1057 |
| [1] | 闫一诺, 邵雪莹, 梁精龙, 等. 钙化重构含钒钢渣微波酸浸提钒研究[J]. 储能科学与技术, 2023, 12(5): 1461-1468. |
| YAN Yinuo, SHAO Xueying, LIANG Jinglong, et al. Study on microwave acid leaching of vanadium from calcified reconstructed steel slag[J]. Energy Storage Science and Technology, 2023, 12(5): 1461-1468. | |
| [2] | 戴纹硕, 郭骞远, 陈向南, 等. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
| DAI Wenshuo, GUO Qianyuan, CHEN Xiangnan, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. | |
| [3] | 李振鹏, 颜东梅, 李军, 等. 全钒液流电池在储能领域的应用与展望[J]. 电池, 2024, 54(3): 422-426. |
| LI Zhenpeng, YAN Dongmei, LI Jun, et al. Application and prospect of all-vanadium flow battery in energy storage field[J]. Battery Bimonthly, 2024, 54(3): 422-426. | |
| [4] | 王刚, 陈金伟, 朱世富, 等. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355. |
| WANG Gang, CHEN Jinwei, ZHU Shifu, et al. Activation of carbon electrodes for all-vanadium redox flow battery[J]. Progress in Chemistry, 2015, 27(10): 1343-1355. | |
| [5] | JIANG Tao, ZHAI Han, YANG Kun, et al. Nitrogen-doped porous graphene electrodes for highly efficient capacitive deionization[J]. International Journal of Electrochemical Science, 2024, 19(1): 100434. |
| [6] | PARAMASIVAM Naveena, SAMBANDAM Anandan, NASTESAN Baskaran. Metalloids (B, Si) and non-metal (N, P, S) doped graphene nanosheet as a supercapacitor electrode: A density functional theory study[J]. Materials Today Communications, 2023, 35: 105905. |
| [7] | 吴云鹏, 王晓峰, 李本仙, 等. 杂原子掺杂石墨烯的制备及其作为超级电容器电极材料[J]. 化学进展, 2023, 35(7): 1005-1017. |
| WU Yunpeng, WANG Xiaofeng, LI Benxian, et al. Preparation of heteroatom doped graphene and its application as electrode materials for supercapacitors[J]. Progress in Chemistry, 2023, 35(7): 1005-1017. | |
| [8] | 李雨情, 陈蕊, 吉雪荣, 等. 杂原子掺杂的碳基无金属电催化剂对氧还原和氧析出反应的性能研究[J]. 化工科技, 2023, 31(6): 65-71. |
| LI Yuqing, CHEN Rui, JI Xuerong, et al. Performance study of heteroatom doped carbon-based metal-free electrocatalysts for oxygen reduction and oxygen evolution reaction[J]. Science & Technology in Chemical Industry, 2023, 31(6): 65-71. | |
| [9] | 夏晨皓. 基于表面修饰和空位缺陷的氮掺杂石墨烯量子点氧还原反应的机理研究[D]. 青岛: 青岛科技大学, 2023. |
| XIA Chenhao. Study on the mechanism of oxygen reduction reaction of nitrogen-doped graphene quantum dots based on surface modification and vacancy defects[D]. Qingdao: Qingdao University of Science & Technology, 2023. | |
| [10] | 刘慧平, 杨懿, 李云鹏, 等. 掺杂时间对水热法制备氮掺杂还原氧化石墨烯的影响研究[J]. 武汉理工大学学报, 2024, 46(2): 13-20, 27. |
| LIU Huiping, YANG Yi, LI Yunpeng, et al. Hydrothermal preparation of nitrogen-doped reduced graphene oxide and its properties as a function of doping time[J]. Journal of Wuhan University of Technology, 2024, 46(2): 13-20, 27. | |
| [11] | JIA Yan, ZHAO Yisong, YANG Xiaoxiao, et al. Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7642-7652. |
| [12] | KUMAR Rajesh, SAHOO Sumanta, JOANNI Ednan, et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39: 47-65. |
| [13] | AHMED Nashaat, AMER Aya, Basant A ALI, et al. Boosting the cyclic stability and supercapacitive performance of graphene hydrogels via excessive nitrogen doping: Experimental and DFT insights[J]. Sustainable Materials and Technologies, 2020, 25: e00206. |
| [14] | MICHEL MYURES X, SURESH S. Nanofluidic electrolyte based on nitrogen doped reduced graphene oxide as an electrocatalyst for VO2 +/VO2+ in vanadium redox flow battery[J]. Journal of Energy Storage, 2023, 58: 106387. |
| [15] | YADAV Ankit, KUMAR Rajeev, SAHOO Balaram. Exploring supercapacitance of solvothermally synthesized N-rGO sheet: Role of N-doping and the insight mechanism[J]. Physical Chemistry Chemical Physics, 2022, 24(2): 1059-1071. |
| [16] | LI Shengcai, ZHANG Ningshuang, ZHOU Haihui, et al. An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor[J]. Applied Surface Science, 2018, 453: 63-72. |
| [17] | LI Yi, YANG Juan, ZHAO Na, et al. Facile fabrication of N-doped three-dimensional reduced graphene oxide as a superior electrocatalyst for oxygen reduction reaction[J]. Applied Catalysis A: General, 2017, 534: 30-39. |
| [18] | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
| LI Ziqing, HE Wenxiu, ZHANG Yongqiang, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624. | |
| [19] | 王佳瑞, 李春丽, 程佳豪, 等. 磷酸在GO插层阶段的功能化调控及机理[J]. 高等学校化学学报, 2024, 45(1): 69-79. |
| WANG Jiarui, LI Chunli, CHENG Jiahao, et al. Functional regulation and mechanism of phosphoric acid in GO intercalation stage[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 69-79. | |
| [20] | 张浩月, 李春丽, 徐博, 等. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
| ZHANG Haoyue, LI Chunli, XU Bo, et al. Structural characteristics and mechanism of GO prepared via improved Hummers method based on segmental sampling[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2606-2615. | |
| [21] | AI Shun, CHEN Yuxin, LIU Yulan, et al. Facile synthesis of nitrogen-doped graphene aerogels for electrochemical detection of dopamine[J]. Solid State Sciences, 2018, 86: 6-11. |
| [22] | SHANG Yan, XU Huizhu, LI Mingyue, et al. Preparation of N-doped graphene by hydrothermal method and interpretation of N-doped mechanism[J]. Nano, 2017, 12(2): 1750018. |
| [23] | WANG Tao, WANG Luxiang, WU Dongling, et al. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents[J]. Journal of Materials Chemistry A, 2014, 2(22): 8352-8361. |
| [24] | KANG Mingu, Wook AHN, KANG Joonhee, et al. Superior electrocatalytic negative electrode with tailored nitrogen functional group for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2023, 78: 148-157. |
| [25] | GRZYB B, GRYGLEWICZ S, ŚLIWAK A, et al. Guanidine, amitrole and imidazole as nitrogen dopants for the synthesis of N-graphenes[J]. RSC Advances, 2016, 6(19): 15782-15787. |
| [26] | ZHU Yanyun, YAN Luting, XU Mingyuan, et al. Difference between ammonia and urea on nitrogen doping of graphene quantum dots[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125703. |
| [27] | ZHANG Minwei, WU Wanfeng, CHEN Fei, et al. Amino acid assisted one-pot green synthesis of N-doped 3D graphene for ultrasensitive neurochemical sensing[J]. ChemistrySelect, 2020, 5(44): 13951-13956. |
| [28] | ZHANG Yong, LIU Kaige, LIU Xijun, et al. Functionalization of partially reduced graphene oxide hydrogels with 2-aminopyridine for high-performance symmetric supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 18728-18740. |
| [29] | CHEN Ping, YANG Jingjing, LI Shanshan, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2): 249-256. |
| [30] | FENG Quantao, LI Tianlin, SUI Yanwei, et al. Facile synthesis and first-principles study of nitrogen and sulfur dual-doped porous graphene aerogels/natural graphite as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2021, 884: 160923. |
| [31] | 张志国, 杨观华, 张杰, 等. 氮掺杂淀粉基硬碳负极材料制备及其储钠性能研究[J]. 广西科技大学学报, 2024, 35(3): 83-90. |
| ZHANG Zhiguo, YANG Guanhua, ZHANG Jie, et al. Research on the preparation and sodium storage properties of nitrogen-doped starch-based hard carbon anode material[J]. Journal of Guangxi University of Science and Technology, 2024, 35(3): 83-90. | |
| [32] | AJRAVAT Kaveri, PANDEY O P, BRAR Loveleen K. Significance of N bonding configurations in N-doped graphene for enhanced supercapacitive performance: A comparative study in aqueous electrolytes[J]. FlatChem, 2024, 43: 100588. |
| [33] | YOON Sang Jun, KIM Sangwon, KIM Dong Kyu, et al. Ionic liquid derived nitrogen-doped graphite felt electrodes for vanadium redox flow batteries[J]. Carbon, 2020, 166: 131-137. |
| [34] | OPAR David O, NANKYA Rosalynn, LEE Jihye, et al. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Applied Surface Science, 2020, 531: 147391. |
| [35] | YANG Zhixin, XING Guangjian, HOU Pengchao, et al. Amino acid-mediated N-doped graphene aerogels and its electrochemical properties[J]. Materials Science and Engineering: B, 2018, 228: 198-205. |
| [36] | 张清. 应用于液流电池的铁电解液及电极材料研究[D]. 长沙: 中南大学, 2014. |
| ZHANG Qing. Study on iron electrolyte and electrode materials for flow battery[D]. Changsha: Central South University, 2014. | |
| [37] | LI Qiang, BAI Anyu, XUE Zhichao, et al. Nitrogen and sulfur co-doped graphene composite electrode with high electrocatalytic activity for vanadium redox flow battery application[J]. Electrochimica Acta, 2020, 362: 137223. |
| [38] | AZIZ Md Abdul, HOSSAIN Syed Imdadul, SHANMUGAM Sangaraju. Hierarchical oxygen rich-carbon nanorods: Efficient and durable electrode for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2020, 445: 227329. |
| [1] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [2] | SUN Yue, XING Baolin, ZHANG Yaojie, FENG Laihong, ZENG Huihui, JIANG Zhendong, XU Bing, JIA Jianbo, ZHANG Chuanxiang, CHEN Lunjian, ZHANG Yue, ZHANG Wenhao. Preparation of B-doped porous carbon nanosheets and their lithium storage performance [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3209-3220. |
| [3] | LI Yingying, LIU An, JIANG Leyan, LI Hui, CHEN Chunyu, JU Dianchun. Progress in the preparation and electrochemical properties of transition metal sulfide Co9S8 [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3114-3127. |
| [4] | CHEN Guohui, WANG Junlei, LI Shilong, LI Jinyu, XU Yunfei, LUO Junxiao, WANG Kun. Progress in synthesis of ternary cathode materials for lithium-ion batteries by flame spray pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 971-983. |
| [5] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
| [6] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
| [7] | LI Long, XING Baolin, BAO Ti'ao, JIN Peng, ZENG Huihui, GUO Hui, ZHANG Yue, ZHANG Wenhao. Effect of mildly-expanded modification on coal-based graphite microstructure and lithium storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6259-6269. |
| [8] | XIAO Wei, XIAN Xiaobin, LIANG Guo, YANG Xinyu, ZHANG Yanhua. Fabrication of nitrogen-doped hierarchical porous carborn derived from porphyra and its supercapacitive properties [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5871-5881. |
| [9] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
| [10] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
| [11] | ZHANG Yan, WANG Miao, ZHAO Jiahui, FENG Yu, MI Jie. Preparation and electrochemical properties of nitrogen-doped graphene/carbon nanotubes/amorphous carbon composites [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5501-5509. |
| [12] | QIN Xiaowei, ZHANG Guojie, LI Sheng, GUO Xiaofei, YAN Huangyu, XU Ying, LIU Jun. Preparation of metal-free nitrogen-doped activated carbon as catalysts for carbon dioxide reforming of methane [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3203-3214. |
| [13] | Fangnan LIANG, Zhiwei LIU, Ning ZHANG, Youzhi LIU. Synthesis of MnO2/PPy composite materials by miniemulsion polymerization and its electrochemical performances [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 979-986. |
| [14] | ZHANG Yingjie, ZHU Ziyi, DONG Peng, ZHAO Shaobo, ZHANG Yanjia, YANG Chengyun, YANG Chengfeng, WEI Keyi, LI Xue. Research progress of carbon-based anode materials for sodium ion batteries [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4106-4115. |
| [15] | LIU Na, LI Aikui. Research on uniformity of vanadium redox-flow battery [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 519-524. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |