Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3203-3214.DOI: 10.16085/j.issn.1000-6613.2020-1318
• Industrial catalysis • Previous Articles Next Articles
QIN Xiaowei1,2(), ZHANG Guojie1,2(), LI Sheng1,2, GUO Xiaofei1,2, YAN Huangyu1,2, XU Ying1,2, LIU Jun1,2
Received:
2020-07-13
Revised:
2020-11-11
Online:
2021-06-22
Published:
2021-06-06
Contact:
ZHANG Guojie
秦晓伟1,2(), 张国杰1,2(), 李晟1,2, 郭晓菲1,2, 阎煌煜1,2, 徐英1,2, 刘俊1,2
通讯作者:
张国杰
作者简介:
秦晓伟(1995—),男,硕士研究生,研究方向为甲烷-二氧化碳重整催化剂的制备。E-mail:基金资助:
CLC Number:
QIN Xiaowei, ZHANG Guojie, LI Sheng, GUO Xiaofei, YAN Huangyu, XU Ying, LIU Jun. Preparation of metal-free nitrogen-doped activated carbon as catalysts for carbon dioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3203-3214.
秦晓伟, 张国杰, 李晟, 郭晓菲, 阎煌煜, 徐英, 刘俊. 非金属氮掺杂活性炭催化剂制备及其催化CH4-CO2重整反应[J]. 化工进展, 2021, 40(6): 3203-3214.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1318
样品 | 比表面积/m2·g-1 | 总孔体积/mL·g-1 | 平均孔径/nm | |||
---|---|---|---|---|---|---|
反应前 | 反应后① | 反应前 | 反应后① | 反应前 | 反应后① | |
AC | 981.42 | 110.22 | 0.67 | 0.14 | 2.72 | 4.94 |
AC-U | 886.97 | 82.83 | 0.63 | 0.13 | 2.83 | 6.26 |
AC-NA | 919.60 | 91.39 | 0.61 | 0.15 | 2.66 | 6.45 |
AC-U-NA | 890.36 | 136.36 | 0.62 | 0.18 | 2.80 | 5.31 |
AC-NA-U | 887.71 | 74.46 | 0.60 | 0.13 | 2.69 | 6.86 |
AC-U.NA | 899.46 | 189.63 | 0.62 | 0.29 | 2.74 | 6.12 |
样品 | 比表面积/m2·g-1 | 总孔体积/mL·g-1 | 平均孔径/nm | |||
---|---|---|---|---|---|---|
反应前 | 反应后① | 反应前 | 反应后① | 反应前 | 反应后① | |
AC | 981.42 | 110.22 | 0.67 | 0.14 | 2.72 | 4.94 |
AC-U | 886.97 | 82.83 | 0.63 | 0.13 | 2.83 | 6.26 |
AC-NA | 919.60 | 91.39 | 0.61 | 0.15 | 2.66 | 6.45 |
AC-U-NA | 890.36 | 136.36 | 0.62 | 0.18 | 2.80 | 5.31 |
AC-NA-U | 887.71 | 74.46 | 0.60 | 0.13 | 2.69 | 6.86 |
AC-U.NA | 899.46 | 189.63 | 0.62 | 0.29 | 2.74 | 6.12 |
样品 | 氮含量(质量分数)/% | 碳含量(质量分数)/% | 氢含量(质量分数)/% | 氧含量(质量分数)/% |
---|---|---|---|---|
AC | 0.19 | 88.38 | 3.69 | 7.60 |
AC-U | 1.82 | 84.27 | 1.14 | 12.63 |
AC-NA | 0.45 | 84.84 | 1.28 | 12.06 |
AC-U-NA | 1.39 | 84.24 | 1.43 | 12.80 |
AC-NA-U | 2.39 | 84.03 | 1.26 | 12.18 |
AC-U.NA | 1.97 | 84.74 | 1.07 | 12.08 |
AC-U.NAafter | 0.47 | 89.93 | 0.88 | 8.58 |
样品 | 氮含量(质量分数)/% | 碳含量(质量分数)/% | 氢含量(质量分数)/% | 氧含量(质量分数)/% |
---|---|---|---|---|
AC | 0.19 | 88.38 | 3.69 | 7.60 |
AC-U | 1.82 | 84.27 | 1.14 | 12.63 |
AC-NA | 0.45 | 84.84 | 1.28 | 12.06 |
AC-U-NA | 1.39 | 84.24 | 1.43 | 12.80 |
AC-NA-U | 2.39 | 84.03 | 1.26 | 12.18 |
AC-U.NA | 1.97 | 84.74 | 1.07 | 12.08 |
AC-U.NAafter | 0.47 | 89.93 | 0.88 | 8.58 |
样品 | 氮含量(质量分数) /% | 氮物种占比 | 吡啶氮含量 (质量分数)/% | 吡咯氮含量 (质量分数)/% | 石墨氮含量 (质量分数)/% | ||
---|---|---|---|---|---|---|---|
吡啶氮占比/% | 吡咯氮占比/% | 石墨氮占比/% | |||||
AC | 0.21 | 22.95 | 24.69 | 52.36 | 0.05 | 0.05 | 0.11 |
AC-U | 2.04 | 42.74 | 25.99 | 31.27 | 0.87 | 0.53 | 0.64 |
AC-NA | 0.36 | 27.76 | 35.31 | 36.93 | 0.10 | 0.13 | 0.13 |
AC-U-NA | 1.08 | 39.84 | 29.93 | 30.23 | 0.43 | 0.32 | 0.33 |
AC-NA-U | 2.43 | 47.00 | 23.96 | 29.04 | 1.14 | 0.58 | 0.71 |
AC-U.NA | 1.77 | 41.16 | 27.89 | 30.99 | 0.73 | 0.49 | 0.55 |
AC-U.NAafter | 0.31 | 32.81 | 31.61 | 35.58 | 0.10 | 0.10 | 0.11 |
样品 | 氮含量(质量分数) /% | 氮物种占比 | 吡啶氮含量 (质量分数)/% | 吡咯氮含量 (质量分数)/% | 石墨氮含量 (质量分数)/% | ||
---|---|---|---|---|---|---|---|
吡啶氮占比/% | 吡咯氮占比/% | 石墨氮占比/% | |||||
AC | 0.21 | 22.95 | 24.69 | 52.36 | 0.05 | 0.05 | 0.11 |
AC-U | 2.04 | 42.74 | 25.99 | 31.27 | 0.87 | 0.53 | 0.64 |
AC-NA | 0.36 | 27.76 | 35.31 | 36.93 | 0.10 | 0.13 | 0.13 |
AC-U-NA | 1.08 | 39.84 | 29.93 | 30.23 | 0.43 | 0.32 | 0.33 |
AC-NA-U | 2.43 | 47.00 | 23.96 | 29.04 | 1.14 | 0.58 | 0.71 |
AC-U.NA | 1.77 | 41.16 | 27.89 | 30.99 | 0.73 | 0.49 | 0.55 |
AC-U.NAafter | 0.31 | 32.81 | 31.61 | 35.58 | 0.10 | 0.10 | 0.11 |
1 | ZHANG Meng, ZHANG Junfeng, ZHOU Zeling, et al. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J]. Applied Catalysis B: Environmental, 2020, 264: 118522. |
2 | ZHANG Meng, ZHANG Junfeng, WU Yingquan, et al. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental, 2019, 244: 427-437. |
3 | 王明智, 张秋林, 张腾飞, 等. Ni基甲烷二氧化碳重整催化剂研究进展[J]. 化工进展, 2015, 34(8): 3027-3033, 3039. |
WANG Mingzhi, ZHANG Qiulin, ZHANG Tengfei, et al. Advance in Ni-based catalysts for the carbon dioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3027-3033, 3039. | |
4 | 曹军, 张莉, 徐宏, 等. 甲烷二氧化碳重整制合成气中积炭效应的数值模拟[J]. 化工进展, 2015, 34(10): 3630-3635, 3655. |
CAO Jun, ZHANG Li, XU Hong, et al. Numerical simulation on the carbon deposition effect in methane carbon dioxide reforming[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3630-3635, 3655. | |
5 | ARAMOUNI Nicolas Abdel Karim, TOUMA Jad G, TARBOUSH Belal Abu, et al. Catalyst design for dry reforming of methane: analysis review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2570-2585. |
6 | ZHANG Xiaoping, WANG Feng, SONG Zhengwei, et al. Comparison of carbon deposition features between Ni/ZrO2 and Ni/SBA-15 for the dry reforming of methane[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(1): 457-470. |
7 | GENG Jiancheng, XUE Dingming, LIU Xiaoqin, et al. N-doped porous carbons for CO2 capture: rational choice of N-containing polymer with high phenyl density as precursor[J]. AIChE Journal, 2017, 63(5): 1648-1658. |
8 | YANG Jie, YUE Limin, LIN Binbin, et al. CO2 adsorption of nitrogen-doped carbons prepared from nitric acid preoxidized petroleum coke[J]. Energy & Fuels, 2017, 31(10): 11060-11068. |
9 | TIAN Ke, WU Zhengchen, XIE Feifei, et al. Nitrogen-doped porous carbons derived from triarylisocyanurate-cored polymers with high CO2 adsorption properties[J]. Energy & Fuels, 2017, 31(11): 12477-12486. |
10 | FIDALGO B, ARENILLAS A, MENÉNDÉZ J A. Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4[J]. Fuel, 2010, 89: 4002-4007. |
11 | GUO Fengbo, ZHANG Yongfa, ZHANG Guojie, et al. Syngas production by carbon dioxide reforming of methane over different semi-cokes[J]. Journal of Power Sources, 2013, 231: 82-90. |
12 | JIANG Xu, LAN Xinzhe, SONG Yonghui, et al. Adsorption of COD in coking wastewater on nitric acid-modified blue coke activated carbon[J]. Journal of Chemistry, 2019, 11: 8593742. |
13 | GOKCE Yavuz, AKTAS Zeki. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol[J]. Applied Surface Science, 2014, 313: 352-359. |
14 | WANG Zean, JIN Hu, WANG Kun, et al. A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid[J]. Fuel, 2019, 239: 272-281. |
15 | XU Long, LIU Yanan, LI Yanjun, et al. Catalytic CH4 reforming with CO2 over activated carbon based catalysts[J]. Applied Catalysis A: General, 2014, 469: 387-397. |
16 | WANG Haoqiang, ZHAO Zongbin, CHEN Meng, et al. Nitrogen-doped mesoporous carbon nanosheets from coal tar as high performance anode materials for lithium ion batteries[J]. New Carbon Materials, 2014, 29(4): 280-286. |
17 | KIM Ji Hyun, Seho CHO, Tae Sung BAE, et al. Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction[J]. Sensors and Actuators B: Chemical, 2014, 197: 20-27. |
18 | LIU Ningning, YIN Longwei, WANG Chengxiaong, et al. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template[J]. Carbon, 2010, 48: 3579-3591. |
19 | ZHANG Bao, YUAN Xinbo, LI Hui, et al. Nitrogen-doped-carbon coated lithium iron phosphate cathode material with high performance for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015, 627: 13-19. |
20 | FAN Yanru, ZHAO Zongbin, ZHOU Quan, et al. Nitrogen-doped carbon microfibers with porous textures[J]. Carbon, 2013, 58: 128-133. |
21 | LI Mingming, XU Fan, LI Haoran, et al. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation[J]. Catalysis Science & Technology, 2016, 6(11): 3670-3693. |
22 | ZHAN Yunfeng, YU Xiang, CAO Linmin, et al. The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13493-13503. |
23 | SHAO Yuyan, Jiehe SUI, YIN Geping, et al. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Applied Catalysis B: Environmental, 2008, 79(1): 89-99. |
24 | WEI Qiliang, TONG Xin, ZHANG Gaixia, et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions[J]. Catalysts, 2015, 5(3): 1574-1602. |
25 | SINGH Gurwinder, KIM In Young, LAKHI Kripal S, et al. Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure[J]. Journal of Materials Chemistry A, 2017, 5: 21196-21204. |
26 | WANG Lifeng, YANG Ralph T. Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping[J]. The Journal of Physical Chemistry C, 2012, 116(1): 1099-1106. |
27 | WICKRAMARATNE Nilantha P, XU Jiantie, WANG Min, et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption[J]. Chemistry of Materials, 2014, 26(9): 2820-2828. |
28 | HE Jiajun, John TO, MEI Jianguo, et al. Facile synthesis of nitrogen-doped porous carbon for selective CO2 capture[J]. Energy Procedia, 2014, 63: 2144-2151. |
29 | SEVILLA Marta, Patricia VALLE-VIGÓN, FUERTES ANTONIO B. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787. |
30 | ZHANG Guojie, SUN Yinghui, XU Ying, et al. Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 234-244. |
31 | WANG Changzhen, SUN Nannan, ZHAO Ning, et al. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014, 6: 640-648. |
32 | Dong Yeon RYU, SHIMOHARA Takaaki, NAKABAYASHI Koji, et al. Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 98-105. |
33 | CHEN Jie, YANG Jie, HU Gengshen, et al. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 1439-1445. |
34 | SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
35 | 张伟庆, 黄滨, 余小岚, 等. 对BJH方法计算孔径分布过程的解读[J]. 大学化学, 2020, 35(2): 98-106. |
ZHANG Weiqing, HUANG Bin, YU Xiaolan, et al. Interpretation of BJH method for calculating aperture distribution process[J]. University Chemistry, 2020, 35(2): 98-106. | |
36 | YUE Limin, XIA Qiongzhang, WANG Liwei, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid & Interface Science, 2018, 511: 259-267. |
37 | 张登峰, 鹿雯, 王盼盼, 等. 活性炭纤维湿氧化改性表面含氧官能团的变化规律[J]. 煤炭学报, 2008, 33(4): 439-443. |
ZHANG Dengfeng, LU Wen, Wang Panpan, et al. Effect of wet oxidized modification on oxygen-containing functional groups of activated carbon fibers[J]. Journal of China Coal Society, 2008, 33(4): 439-443. | |
38 | 张译方. 硝酸介质中尿素与HNO2的反应动力学[J]. 广东化工, 2017, 44(7): 117-119. |
ZHANG Yifang. Reaction kinetics of urea with nitrous acid in nitric acid medium[J]. Guangdong Chemical Industry, 2017, 44(7): 117-119. | |
39 | 吴珧萍, 陈天朗, 肖慎修. 尿素-甲醛法测定硝酸根[J]. 理化检验-化学分册, 2005, 41(10): 746-747. |
WU Yaoping, CHEN Tianlang, XIAO Shenxiu. Urea formol titration for determination of large amount of nitrate[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2005, 41(10): 746-747. | |
40 | 师兆忠. 硝酸磷肥中氮含量测定方法的研究[J]. 中国土壤与肥料, 2007(6): 88-90. |
SHI Zhaozhong. The research of determination of nitrogen content in nitrophosphate[J]. Soil and Fertilizer Sciences in China, 2007(6): 88-90. | |
41 | 苏爱廷. 活性炭改性对CH4-CO2重整反应催化性能的研究[D]. 太原: 太原理工大学, 2016. |
SU Aiting. Catalytic performance of modified activated carbon for CO2 reforming of CH4[D]. Taiyuan: Taiyuan University of Technology, 2016. | |
42 | SONG Jian, SHEN Wenzhong, WANG Jianguo, et al. Superior carbon-based CO2 adsorbents prepared from poplar anthers[J]. Carbon, 2014, 69: 255-263. |
43 | LI Dawei, ZHOU Jiaojiao, ZHANG Zongbo, et al. Improving low-pressure CO2 capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation[J]. Carbon, 2017, 114: 496-503. |
44 | KOU Jiahui, SUN Linbing. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10916-10925. |
45 | TIAN Wenjie, ZHANG Huayang, SUN Hongqi, et al. Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26: 8651-8661. |
46 | SHANGGUAN Ju, LI Chunhu, GUO Hanxian. Hydrolysis of carbonyl sulfide and carbon disulfide over alumina based catalysis Ⅱ: Study on CO2-TPD of catalysis[J]. Journal of Natural Gas Chemistry, 1998(1): 24-30. |
47 | WANG Xueqian, WANG Fei, CHEN Wei, et al. Adsorption of carbon disulfide on Cu/CoSPc/Ce modified activated carbon under microtherm and micro-oxygen conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13626-13634. |
48 | 张子靖, 刘畅, 李如会, 等. 硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能[J]. 复合材料学报, 2020, 37(7): 1676-1683. |
ZHANG Zijing, LIU Chang, LI Ruhui, et al. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1676-1683. | |
49 | ZHANG Fangbai, WANG Ning, YANG Lu, et al. Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18688-18694. |
50 | MA Hongyan, ZENG Liang TIAN Hao, et al. Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts[J]. Applied Catalysis B: Environmental, 2016, 181: 321-331. |
51 | 舒新前, 王祖讷, 徐精求, 等. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报, 1996, 24(5): 426-433. |
SHU Xinqian, WANG Zuna, XU Jingqiu, et al. Structural characteristics and differences among lithotypes[J]. Journal of Fuel Chemistry and Technology, 1996, 24(5): 426-433. | |
52 | ZHANG Guojie, QU Jiangwen, SU Aiting, et al. Towards understanding the carbon catalyzed CO2 reforming of methane to syngas[J]. Journal of Industrial & Engineering Chemistry, 2015, 21: 311-317. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |