Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5055-5074.DOI: 10.16085/j.issn.1000-6613.2024-1222
• Materials science and technology • Previous Articles
HU Liang1(
), ZHANG Kaiyue1(
), GAO Bo2, ZHANG Zhibin1, LIU Zhuang2, FU Haiyang2, TANG Yiqiao1, YANG Yuanyuan1
Received:2024-07-26
Revised:2024-12-03
Online:2025-09-30
Published:2025-09-25
Contact:
ZHANG Kaiyue
胡亮1(
), 张开悦1(
), 高波2, 张志彬1, 刘状2, 付海洋2, 唐一巧1, 杨媛媛1
通讯作者:
张开悦
作者简介:胡亮(1984—),男,博士,讲师,研究方向为石墨烯材料的制备及其应用以及金属表面处理。E-mail:huliang@sylu.edu.cn。
基金资助:CLC Number:
HU Liang, ZHANG Kaiyue, GAO Bo, ZHANG Zhibin, LIU Zhuang, FU Haiyang, TANG Yiqiao, YANG Yuanyuan. Application of graphene and functionalized graphene in the field of energy storage[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5055-5074.
胡亮, 张开悦, 高波, 张志彬, 刘状, 付海洋, 唐一巧, 杨媛媛. 石墨烯及其功能化石墨烯材料在储能领域中的应用[J]. 化工进展, 2025, 44(9): 5055-5074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1222
| [1] | YIN Li, DENG Chuan, DENG Fei, et al. Analysis of the interaction energies between and within graphite particles during mechanical exfoliation[J]. New Carbon Materials, 2018, 33(5): 449-459. |
| [2] | JAYASENA Buddhika, MELKOTE Shreyes N. An investigation of PDMS stamp assisted mechanical exfoliation of large area graphene[J]. Procedia Manufacturing, 2015, 1: 840-853. |
| [3] | YUSUF Mohammed, KUMAR Mahendra, KHAN Moonis Ali, et al. A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites[J]. Advances in Colloid and Interface Science, 2019, 273: 102036-102059. |
| [4] | 夏永康, 顾明远, 杨红官, 等. CVD法制备三维石墨烯的电化学储能性能[J]. 电化学, 2019, 25(1): 89-103. |
| XIA Yongkang, GU Mingyuan, YANG Hongguan, et al. CVD preparation and application of 3D graphene in electrochemical energy storage[J]. Journal of Electrochemistry, 2019, 25(1): 89-103. | |
| [5] | 李义春. 全球石墨烯产业研究报告[M]. 上海: 华东理工大学出版社, 2021. |
| LI Yichun. Global graphene industry research report[M]. Shanghai: East China University of Science and Technology Press, 2021. | |
| [6] | 胡贤飞. 纸团石墨烯在储能材料中的应用[D]. 天津: 天津大学, 2018. |
| HU Xianfei. Application of paper graphene in energy storage materials[D]. Tianjin: Tianjin University, 2018. | |
| [7] | HAN Junwei, LI Huan, YANG Quanhong. Compact energy storage enabled by graphenes: Challenges, strategies and progress[J]. Materials Today, 2021, 51: 552-565. |
| [8] | CAI Yuxuan, ZHANG Nan, CAO Xiaoling, et al. Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage[J]. Solar Energy Materials and Solar Cells, 2023, 252: 112176-112186. |
| [9] | SETYAWATI Rosana Budi, STULASTI Khikmah Nur Rikhy, AZINUDDIN Yazid Rijal, et al. High power and thermal-stable of graphene modified LiNi0.8Mn0.1Co0.1O2 cathode by simple method for fast charging-enable lithium ion battery[J]. Results in Engineering, 2024, 21: 101651-101661. |
| [10] | LIU Zhiru, GUO Yanhong, JIANG Rui, et al. Exploring a preheating strategy for lithium-ion battery pack using graphene-enhanced microencapsulated phase change materials[J]. Journal of Energy Storage, 2024, 104: 114609-114622. |
| [11] | 王雷. 石墨烯三维复合材料的制备及其微波吸收性能研究[D]. 西安: 西北工业大学, 2014. |
| WANG Lei. Preparation and microwave absorption properties of graphene three-dimensional composites[D]. Xi’an: Northwestern Polytechnical University, 2014. | |
| [12] | 李文鹏, 刘晴, 杨志荣, 等. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231. |
| LI Wenpeng, LIU Qing, YANG Zhirong, et al. Advances in efficient preparation of graphene by liquid-phase exfoliation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231. | |
| [13] | 王振廷, 王彦霞, 张永柯. 超临界CO2流体剥离膨胀石墨制备石墨烯[J]. 广东化工, 2020, 47(1): 6-8. |
| WANG Zhenting, WANG Yanxia, ZHANG Yongke. Graphene was prepared by stripping expanded graphite with supercritical CO2 fluid[J]. Guangdong Chemical Industry, 2020, 47(1): 6-8 | |
| [14] | ZHOU Yunshen, XIONG Wei, PARK Jongbok, et al. Laser-assisted nanofabrication of carbon nanostructures[J]. Journal of Laser Applications, 2012, 24(4): 042007. |
| [15] | SIVAKUMAR Mani, YADAV Sudesh, HUNG Wei-Song, et al. One-pot eco-friendly synthesis of edge-carboxylate graphene via dry ball milling for enhanced removal of acid and basic dyes from single or mixed aqueous solution[J]. Journal of Cleaner Production, 2020, 263: 121498-121509. |
| [16] | PERRET R, RULAND W. The microstructure of PAN-base carbon fibres[J]. Journal of Applied Crystallography, 1970, 3(6): 525-532. |
| [17] | 王延相, 刘玉兰, 王丽民, 等. 由聚丙烯腈基碳纤维制备石墨烯薄膜的探索研究[J]. 功能材料, 2011, 42(3): 520-523. |
| WANG Yanxiang, LIU Yulan, WANG Limin, et al. Preparation and research of graphene sheets from PAN based carbon fibers[J]. Journal of Functional Materials, 2011, 42(3): 520-523. | |
| [18] | 段淼, 李四中, 陈国华. 机械法制备石墨烯的研究进展[J]. 材料工程, 2013, 41(12): 85-91. |
| DUAN Miao, LI Sizhong, CHEN Guohua. Research progress in preparation of graphene by mechanical exfoliation[J]. Journal of Materials Engineering, 2013, 41(12): 85-91. | |
| [19] | GEIM A K, NOVOSELOV K S.The rise of graphene[J].Nature Materials, 2007, 6: 183-191. |
| [20] | WEN Ya, LIU Huimin, JIANG Xunyong. Preparation of graphene by exfoliation and its application in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 961: 170885-170900. |
| [21] | 祁帅, 黄国强. 液相剥离法制备石墨烯的新进展[J]. 材料导报, 2017, 31(17): 34-40. |
| QI Shuai, HUANG Guoqiang. Progress of graphene preparation by liquid-phase exfoliation[J]. Materials Review, 2017, 31(17): 34-40. | |
| [22] | 袁小亚. 石墨烯的制备研究进展[J]. 无机材料学报, 2011, 26(6): 561-570. |
| YUAN Xiaoya. Progress in preparation of graphene[J]. Journal of Inorganic Materials, 2011, 26(6): 561-570. | |
| [23] | LI Jianhui, YAN Haiting, DANG Dongfeng, et al. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene[J]. Journal of Colloid and Interface Science, 2019, 535: 92-99. |
| [24] | 向皓明. 循环超临界CO2射流空化剥离制备石墨烯研究[D]. 大连: 大连理工大学, 2021. |
| XIANG Haoming. Study on preparation of graphene by cyclic supercritical CO2 jet cavitation stripping[D]. Dalian: Dalian University of Technology, 2021. | |
| [25] | ZHU Hongyue, WANG Qibo, YIN Jianzhong. High-pressure induced exfoliation for regulating the morphology of graphene in supercritical CO2 system[J]. Carbon, 2021, 178: 211-222. |
| [26] | LI Lei, XU Jingcheng, LI Genghui, et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation[J]. Chemical Engineering Journal, 2016, 284: 78-84. |
| [27] | WEI Ying, SUN Zhenyu. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6): 311-321. |
| [28] | LI Dan, MÜLLER Marc B, GILJE Scott, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3: 101-105. |
| [29] | STANKOVICH Sasha, DIKIN Dmitriy A, PINER Richard D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
| [30] | BOURLINOS Athanasios B, GOURNIS Dimitrios, PETRIDIS Dimitrios, et al. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 2003, 19(15): 6050-6055. |
| [31] | FAN Xiaobin, PENG Wenchao, LI Yang, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[J]. Advanced Materials, 2008, 20(23): 4490-4493. |
| [32] | SHER SHAH Md Selim Arif, Reum PARK A, ZHANG Kan, et al. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3893-3901 |
| [33] | PEI Songfeng, ZHAO Jinping, DU Jinhong, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15): 4466-4474. |
| [34] | CHEN Ji, LI Yingru, HUANG Liang, et al. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process[J]. Carbon, 2015, 81: 826-834. |
| [35] | SHAH Ami A, XU George, ROSEN Antony, et al. Brief report: Anti-RNPC-3 antibodies As a marker of cancer-associated scleroderma[J]. Arthritis & Rheumatology, 2017, 69(6): 1306-1312. |
| [36] | HSU Steven, HOUSTON Brian A, TAMPAKAKIS Emmanouil, et al. Right ventricular functional reserve in pulmonary arterial hypertension[J]. Circulation, 2016, 133(24): 2413-2422. |
| [37] | SHAMAILA Sajjad, SAJJAD Ahmed Khan Leghari, IQBAL Anum. Modifications in development of graphene oxide synthetic routes[J]. Chemical Engineering Journal, 2016, 294: 458-477. |
| [38] | 王露. 改进Hummers法制备氧化石墨烯及其表征[J]. 包装学报, 2015, 7(2): 28-31, 37. |
| WANG Lu. Synthesis and characterization of graphene oxide with improved hummers method[J]. Packaging Journal, 2015, 7(2): 28-31, 37. | |
| [39] | LOWE Sean E, SHI Ge, ZHANG Yubai, et al. The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide[J]. Nano Materials Science, 2019, 1(3): 215-223. |
| [40] | LIU Jilei, Chee Kok POH, ZHAN Da, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod[J]. Nano Energy, 2013, 2(3): 377-386. |
| [41] | WANG Guoxiu, WANG Bei, PARK Jinsoo, et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation[J]. Carbon, 2009, 47(14): 3242-3246. |
| [42] | Murat ALANYALıOĞLU, SEGURA Juan Josè, Judith ORÓ-SOLÈ, et al. The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes[J]. Carbon, 2012, 50(1): 142-152. |
| [43] | ZHOU Ming, TANG Jie, CHENG Qian, et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chemical Physics Letters, 2013, 572: 61-65. |
| [44] | ABDELKADER Amr M, KINLOCH Ian A, DRYFE Robert A W. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1632-1639. |
| [45] | YANG Yingchang, LU Fang, ZHOU Zhou, et al. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties[J]. Electrochimica Acta, 2013, 113: 9-16. |
| [46] | SAFITRI R N, SURIANI A B, HTWE Y Z N, et al. Recent development of electrochemically exfoliated graphene and its hybrid conductive inks for printed electronics applications[J]. Synthetic Metals, 2024, 308: 117707-117728. |
| [47] | GONG Youning, PING Yunjie, LI Delong, et al. Preparation of high-quality graphene via electrochemical exfoliation & spark plasma sintering and its applications[J]. Applied Surface Science, 2017, 397: 213-219. |
| [48] | CHEN Lingxiu, WANG Dehe, SUN Qingxu, et al. Effect of hydrogen on graphene growth on SiC(0001) under atmospheric pressure[J]. Physica E: Low-dimensional Systems and Nanostructures, 2025, 165: 116088-116091. |
| [49] | PEDOWITZ Michael, LEWIS Daniel, DEMELL Jennifer, et al. Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates[J]. Materials Today Advances, 2024, 21: 100467-100479. |
| [50] | KAMEL Michael S A, Michael OELGEMÖLLER, JACOB Mohan V. Chemical vapor deposition-grown graphene transparent conducting electrode for organic photovoltaics: Advances towards scalable transfer-free synthesis[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114740-114771. |
| [51] | MAULINA Hervin, WIDIANTO Eri, SUBAMA Emmistasega, et al. Optical properties of CVD-grown multilayer graphene on nickel using spectroscopic ellipsometry[J]. Optical Materials, 2024, 157: 116300-116306. |
| [52] | YAN Xin, CUI Xiao, LI Liangshi. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945. |
| [53] | JIANG Lang, NIU Tianchao, LU Xiuqiang, et al. Low-temperature, bottom-up synthesis of graphene via a radical-coupling reaction[J]. Journal of the American Chemical Society, 2013, 135(24): 9050-9054. |
| [54] | DENG Dehui, PAN Xiulian, ZHANG Hui, et al. Freestanding graphene by thermal splitting of silicon carbide granules[J]. Advanced Materials, 2010, 22(19): 2168-2171. |
| [55] | 陆东梅, 杨瑞霞, 孙信华, 等. 石墨烯的SiC外延生长及应用[J]. 半导体技术, 2012, 37(9): 665-669. |
| LU Dongmei, YANG Ruixia, SUN Xinhua, et al. Epitaxial growth of graphene on SiC substrate and their application[J]. Semiconductor Technology, 2012, 37(9): 665-669. | |
| [56] | YAZDI Gholam, IAKIMOV Tihomir, YAKIMOVA Rositsa. Epitaxial graphene on SiC: A review of growth and characterization[J]. Crystals, 2016, 6(5): 53. |
| [57] | RATHORE Shivi, PATEL Dinesh Kumar, THAKUR Mukesh Kumar, et al. Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H-SiC[J]. Carbon, 2021, 184: 72-81. |
| [58] | VOZDA V, MEDVEDEV N, CHALUPSKÝ J, et al. Detachment of epitaxial graphene from SiC substrate by XUV laser radiation[J]. Carbon, 2020, 161: 36-43. |
| [59] | ZHU Fengqian, JIA Yuping, SUN Xiaojuan, et al. Ultrafine Si evaporation control technology to inhibit the island nucleation of epitaxial graphene on SiC (000-1)[J]. Journal of Crystal Growth, 2024, 642: 127773-127780. |
| [60] | CAO Ning, QI Tianyi, QI Hao, et al. An alternative mechanism of dry reforming enhanced growth of high-quality graphene: CO2-assisted CVD[J]. Chemical Engineering Journal, 2024, 479: 147477-147485. |
| [61] | FAN Xing, SUN Jie, GUO Weiling, et al. Chemical vapor deposition of graphene on refractory metals: The attempt of growth at much higher temperature[J]. Synthetic Metals, 2019, 247: 233-239. |
| [62] | AKHTAR Fatima, DABROWSKI Jaroslaw, LISKER Marco, et al. Large-scale chemical vapor deposition of graphene on polycrystalline nickel films: Effect of annealing conditions[J]. Thin Solid Films, 2019, 690: 137565-137572. |
| [63] | SIMPSON Christopher D, MATTERSTEIG Gunter, MARTIN Kai, et al. Nanosized molecular propellers by cyclodehydrogenation of polyphenylene dendrimers[J]. Journal of the American Chemical Society, 2004, 126(10): 3139-3147. |
| [64] | TREIER Matthias, PIGNEDOLI Carlo Antonio, LAINO Teodoro, et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes[J]. Nature Chemistry, 2011, 3(1): 61-67. |
| [65] | 成雪莉, 张维福, 罗城城, 等. 一步水热法制备三维石墨烯/Fe3O4复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
| CHENG Xueli, ZHANG Weifu, LUO Chengcheng, et al. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance[J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. | |
| [66] | YANG Huafeng, SHAN Changsheng, LI Fenghua, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid[J]. Chemical Communications, 2009(26): 3880-3882. |
| [67] | SHEN Jianfeng, HU Yizhe, LI Chen, et al. Synthesis of amphiphilic graphene nanoplatelets[J]. Small, 2009, 5(1): 82-85. |
| [68] | PAWAR D C, BAGDE A G, THORAT J P, et al. Synthesis of reduced graphene oxide (rGO)/polyaniline (PANI) composite electrode for energy storage: Aqueous asymmetric supercapacitor[J]. European Polymer Journal, 2024, 218: 113366-113377. |
| [69] | LI Xiaolin, WANG Xinran, ZHANG Li, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232. |
| [70] | Cristina VALLÉS, DRUMMOND Carlos, SAADAOUI Hassan, et al. Solutions of negatively charged graphene sheets and ribbons[J]. Journal of the American Chemical Society, 2008, 130(47): 15802-15804. |
| [71] | PATIL Avinash J, VICKERY Jemma L, SCOTT Thomas B, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J]. Advanced Materials, 2009, 21(31): 3159-3164. |
| [72] | SHEN Hailong, WEI Xiaochun, CEN Zhenqi, et al. Synthesis of nitrogen-doped graphene driven from photothermal decomposition of ammonium bicarbonate and its application in supercapacitors[J]. Journal of Energy Storage, 2022, 56: 105934-105941. |
| [73] | AMIRI Ahmad, SHANBEDI Mehdi, CHEW B T, et al. Toward improved engine performance with crumpled nitrogen-doped graphene based water-ethylene glycol coolant[J]. Chemical Engineering Journal, 2016, 289: 583-595. |
| [74] | DU Qinglai, ZHENG Mingbo, ZHANG Lifeng, et al. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors[J]. Electrochimica Acta, 2010, 55(12): 3897-3903. |
| [75] | TAMGADGE Rupesh M, SHUKLA Anupam. A pH-dependent partial electrochemical exfoliation of highly oriented pyrolytic graphite for high areal capacitance electric double layer capacitor electrode[J]. Electrochimica Acta, 2019, 325: 134933-134943. |
| [76] | 朱晓艳. PEDOT增强石墨烯和碳纤维薄膜电容性能研究[D]. 西安: 陕西师范大学, 2022. |
| ZHU Xiaoyan. Study on capacitance properties of PEDOT reinforced graphene and carbon fiber films[D]. Xi’an: Shaanxi Normal University, 2022. | |
| [77] | 张晴晴. 胺改性石墨烯及含铁氧化物三维炭材料的电化学性能研究[D]. 北京: 中国矿业大学(北京), 2020. |
| ZHANG Qingqing. Study on electrochemical properties of amine modified graphene and iron oxide three-dimensional carbon materials[D]. Beijing: China University of Mining & Technology, Beijing, 2020. | |
| [78] | 王晓倩. 氮掺杂石墨烯的化学选择性合成及其电化学储能和催化性质研究[D]. 合肥: 中国科学技术大学, 2018. |
| WANG Xiaoqian. Chemoselective synthesis of nitrogen doped graphene and its electrochemical energy storage and catalytic properties[D]. Hefei: University of Science and Technology of China, 2018. | |
| [79] | WU Shuilin, CHEN Guanxiong, KIM Na Yeon, et al. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance[J]. Small, 2016, 12(17): 2376-2384. |
| [80] | 叶江林, 朱彦武. 氢氧化钾活化制备超级电容器多孔碳电极材料[J]. 电化学, 2017, 23(5): 548-559. |
| YE Jianglin, ZHU Yanwu. Porous carbon materials produced by KOH activation for supercapacitor electrodes[J]. Journal of Electrochemistry, 2017, 23(5): 548-559. | |
| [81] | Hamideh MOHAMMADIAN-SARCHESHMEH, Mohammad MAZLOUM-ARDAKANI. Porous carbohydrate-graphene aerogels synthesized by green method as electroactive supercapacitor materials[J]. Heliyon, 2024, 10(8): 29852-29860. |
| [82] | ABDOU AHMED ABDOU ELSEHSAH Khaled, AHMAD NOORDEN Zulkarnain, SAMAN Norhafezaidi MAT. Current insights and future prospects of graphene aerogel-enhanced supercapacitors: A systematic review[J]. Heliyon, 2024, 10(17): 37071-37094. |
| [83] | FU Haiyang, GAO Bo, LI Jiahao, et al. Honeycomb graphene-polyaniline nanocomposites as novel electrode materials for high-performance supercapacitors[J]. New Journal of Chemistry, 2023, 47(23): 11001-11014. |
| [84] | XIE Hongmei, DAI Juguo, LUO Lili, et al. Terpyridine-functionalized polyaniline/reduced graphene oxide composites for capturing Cr3+ ions and its application in supercapacitors[J]. Journal of Energy Storage, 2022, 52: 104965-104974. |
| [85] | ZHANG Buyuan, WU Chenghan, BAO Yan, et al. Aniline tetramer conjugated N-doped graphene aerogel enabling efficient pH-universal aqueous supercapacitors[J]. Journal of Colloid and Interface Science, 2025, 677: 151-160. |
| [86] | 周红燕. 过渡金属氧化物/石墨烯复合材料的锂电性能研究[D]. 兰州: 兰州大学, 2021. |
| ZHOU Hongyan. Study on lithium electrical properties of transition metal oxide/graphene composites[D]. Lanzhou: Lanzhou University, 2021. | |
| [87] | 刘然. 基于锰基气凝胶的MnO/C复合材料的可控合成及其电化学储能研究[D]. 北京: 北京化工大学, 2021. |
| LIU Ran. Controllable synthesis and electrochemical energy storage of MnO/C composites based on manganese-based aerogels[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| [88] | 宋金聚, 苑仁鲁, 侯若洋. 石墨烯在锂离子电池中的应用进展[J]. 炭素, 2023 (2): 21-29. |
| SONG Jinju, YUAN Renlu, HOU Ruoyang. Application progress of graphene in lithium ion batteries[J]. Carbon, 2023 (2): 21-29. | |
| [89] | PAN Yang, XU Meng, YANG Leyan, et al. Porous architectures assembled with ultrathin Cu2O-Mn3O4 hetero-nanosheets vertically anchoring on graphene for high-rate lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 819: 152969-152978. |
| [90] | WU Diben, WANG Chao, WU Huijie, et al. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries[J]. Carbon, 2020, 163: 137-144. |
| [91] | WAN Baicen, GUO Jiangcheng, LAI Weihong, et al. Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 843: 156050-156057. |
| [92] | WU Diben, ZHAO Wenxi, WU Huijie, et al. Holey graphene confined hollow nickel oxide nanocrystals for lithium ion storage[J]. Scripta Materialia, 2020, 178: 187-192. |
| [93] | KANG Rong, LI Sheng, ZOU Bobo, et al. Design of Nb2O5@rGO composites to optimize the lithium-ion storage performance[J]. Journal of Alloys and Compounds, 2021, 865: 158824-158830. |
| [94] | MIFOUNDE BENGONO D A, ZHANG Bao, YAO Yingying, et al. Fe3O4 wrapped by reduced graphene oxide as a highperformance anode material for lithium-ion batteries[J]. International Journal of Ionics, 2020, 26: 1695-1701. |
| [95] | FU Yuanxiang, DAI Yao, PEI Xian-Yinan, et al. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries[J]. Applied Surface Science, 2019, 497: 143553-143559. |
| [96] | QIN Getong, DING Ling, ZENG Min, et al. Mesoporous Fe2O3/N-doped graphene composite as an anode material for lithium ion batteries with greatly enhanced electrochemical performance[J]. Journal of Electroanalytical Chemistry, 2020, 866: 114176-114181. |
| [97] | CHEN Jingqi, BAI Zhenhua, LI Xuetong, et al. In-situ synthesis of reduced graphene oxide wrapped Mn3O4 nanocomposite as anode materials for high-performance lithium-ion batteries[J]. Ceramics International, 2022, 48(21): 31923-31930. |
| [98] | FAN Haiyang, YI Guiyun, TIAN Qiming, et al. Hydrothermal-template synthesis and electrochemical properties of Co3O4/nitrogen-doped hemisphere-porous graphene composites with 3D heterogeneous structure[J]. RSC Advances, 2020, 10(60): 36794-36805. |
| [99] | ERSHADI Mahshid, JAVANBAKHT Mehran, BRANDELL Daniel, et al. Facile synthesis of amino-functionalized mesoporous Fe3O4/rGO 3D nanocomposite by diamine compounds as Li-ion battery anodes[J]. Applied Surface Science, 2022, 601: 154120-154137. |
| [100] | 王青林. 钠离子电池正极材料的制备及其与电解液相容性研究[D]. 徐州: 中国矿业大学, 2023. |
| WANG Qinglin. Preparation of cathode material for sodium ion battery and its compatibility with electrolyte[D]. Xuzhou: China University of Mining and Technology, 2023. | |
| [101] | 罗达. 功能化石墨烯改性及其纳米复合材料的储能应用研究[D]. 南京: 南京理工大学, 2018. |
| LUO Da. Study on modification of functionalized graphene and its application in energy storage of nanocomposites[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
| [102] | ZHU Ming, LI Jialun, YANG Xijia, et al. 3D reduced graphene oxide wrapped MoS2@Sb2S3 heterostructures for high performance sodium-ion batteries[J]. Applied Surface Science, 2023, 624: 157106-157115. |
| [103] | JIN Youngho, SEONG Honggyu, MOON Joon Ha, et al. Study on colloidal synthesis of ZnS nanospheres embedded in reduced graphene oxide materials for sodium-ion batteries and energy storage mechanism[J]. Journal of Alloys and Compounds, 2023, 943: 169076-169084. |
| [104] | LI Wenbin, ZHANG Jianghua, HUANG Jianfeng, et al. Constructing VS4 nanorods anchored on reduced graphene oxide surface to enhance rate capability as sodium-ion battery anode[J]. Materials Letters, 2023, 330: 133301-133304. |
| [105] | ZHANG Lixuan, PENG Fan, ZHANG Man, et al. Heterostructured FeS2/SnS2 nanoparticles anchored on graphene for advanced lithium and sodium-ion batteries[J]. Applied Surface Science, 2022, 606: 154864-154873. |
| [106] | Waleed JAN, KHAN Adnan Daud, IFTIKHAR Faiza Jan, et al. Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices[J]. Journal of Energy Storage, 2023, 72: 108559-108576. |
| [107] | KAMISAN Ainnur Izzati, TUNKU KUDIN Tunku Ishak, KAMISAN Ainnur Sherene, et al. Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8630-8657. |
| [108] | LIN Pengshan, GAO Bo, LI Jiahao, et al. VO2/VS4 heterostructures structure-modified 3D reduced graphene oxide aerogel as an advanced host for lithium-sulfur batteries[J]. Diamond and Related Materials, 2024, 147: 111287-111298. |
| [109] | HONG Jin Young, JUNG Yongju, PARK Dae-Won, et al. Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells[J]. Electrochimica Acta, 2018, 259: 1021-1029. |
| [110] | ZHOU Yin, GUO Shaojun. Recent advances in cathode catalyst architecture for lithium-oxygen batteries[J]. eScience, 2023, 3(4): 100123-100138. |
| [111] | 梁师鹏. 还原氧化石墨烯的制备及其锂空气电池的电化学性能研究[D]. 深圳: 深圳大学, 2020. |
| LIANG Shipeng. Preparation of reduced graphene oxide and study on electrochemical performance of lithium-air battery[D]. Shenzhen: Shenzhen University, 2020. | |
| [112] | GNANA KUMAR G, CHRISTY Maria, JANG Hosaeng, et al. Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries[J]. Journal of Power Sources, 2015, 288: 451-460. |
| [113] | HUANG Cheng-Chia, POURZOLFAGHAR Hamed, HUANG Chengliang, et al. FeNi nanoalloy-carbon nanotubes on defected graphene as an excellent electrocatalyst for lithium-oxygen batteries[J]. Carbon, 2024, 222: 118973-118982. |
| [114] | LI Zeming, HUANG Simiao, TAO Daiwen, et al. Reduced graphene oxide coated with amorphous lead as positive additive for enhanced performance of lead-carbon batteries[J]. Electrochemistry Communications, 2023, 157: 107622-107630. |
| [115] | TAO Daiwen, LIU Xiong, LI Zeming, et al. PbO nanoparticles anchored on reduced graphene oxide for enhanced cycle life of lead-carbon battery[J]. Electrochimica Acta, 2022, 432: 141228-141237. |
| [116] | 中商产业研究院. 2024年中国石墨烯行业市场前景预测研究报告[R/OL]. (2024-09-09) . |
| Zhongshang Industry Research Institute Co., Ltd.. China graphene market trends and forecast research report 2024[R/OL]. (2024-09-09) . | |
| [117] | 网易(杭州)网络有限公司. 石墨烯电池核心科技再创新高度, 中国超威技术实力跻身全球第一[EB/OL]. (2023-04-17) . |
| Netease (Hangzhou) Network Co., Ltd.. Core graphene battery technology reaches new peak: chaowei ranked world's #1 in technical capabilities[EB/OL]. (2023-04-17) . | |
| [118] | 北京搜狐互联网信息服务有限公司. 超威黑金5.0巅峰性能傲视行业, 中国超威聚力打造品牌新势能[EB/OL].(2023-01-31) . |
| Beijing Sohu Internet Information Service Co., Ltd.. Chaowei black gold 5.0 redefines industry standards as china’s leader cultivates new brand value[EB/OL]. (2023-01-31) . | |
| [119] | 北京搜狐互联网信息服务有限公司. 东旭光电发售世界首款石墨烯基锂离子电池“烯王”[EB/OL]. (2016-09-09) . |
| Beijing Sohu Internet Information Service Co., Ltd.. World premiere: dongxu optoelectronics launches “king of graphene”, the first graphene-powered lithium-ion battery[EB/OL]. (2016-09-09) . | |
| [120] | 北京电鳗快报科技有限公司. 碳世纪发布节能环保石墨烯锂离子5号充电电池烯储霸王[EB/OL].(2017-02-24) . |
| Beijing Electric Eel Express Technology Co., Ltd.. Carbon century launches eco-friendly graphene lithium-ion 5 rechargeable battery with graphene storage technology[EB/OL]. (2017-02-24) . | |
| [121] | 北京商状元科技有限公司. 真正质保2年的电池!京九长征1号重磅上市,带领行业实现质的飞跃[EB/OL].(2021-08-28) . |
| Beijing Business Champion Technology Co., Ltd.. Jingjiu relaunches long march 1 battery with industry-leading 2-year warranty, marking technical breakthrough[EB/OL]. (2021-08-28) . |
| [1] | LIN Mei, LEI Yu, LI Ping, ZHANG Qiang. Interface adhesion performance and adhesion mechanism between graphene/rubber composite modified asphalt and aggregate [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 991-1002. |
| [2] | DING Wei, DU Wei, GUO Tiebin, GUAN Xiaozhuo, WANG Tiezheng, GAO Jiantong, ZHANG Nan, LI Da, ZHANG Lanhe. Preparation and anti-corrosion research of graphene oxide modified by L-glutamic acid composite epoxy resin coating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 424-435. |
| [3] | YIN Shaowu, HUANG Ruoxiao, ZAN Xiaojun, TONG Lige, LIU Chuanping, WANG Li. Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 243-254. |
| [4] | MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456. |
| [5] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
| [6] | QU Yun, CHENG Liyuan, DAI Guoliang, WANG Gang, GUO Yuqing, SUN Jie. Preparation and properties of PAN/MXene coaxial fiber electrode [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5113-5122. |
| [7] | LIANG Ximei, FEI Hua, LI Yuanlin, YONG Fan, GUO Mengqian, ZHOU Jiahong. Preparation and thermal properties of lauric acid-based binary low compatible energy storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3256-3267. |
| [8] | PAN Tongtong, CUI Xiangmei. Preparation of methylglucamine-functionalized rGO/MWCNTs-OH composite aerogels and its adsorption of boron [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3386-3397. |
| [9] | LAN Ruisong, LIU Lihua, ZHANG Qian, CHEN Boyan, HONG Junming. Performance and biotoxicity evaluation of sulfur-doped graphene as a cathode for MFC [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3430-3439. |
| [10] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
| [11] | YAN Yu, XIA Xin, LUO Junpeng, LIU Dapeng, QIAN Feiyue. Effects of peroxide types on the removal of anti-inflammatory medicines in water with rGO/CNTs catalytic membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1436-1445. |
| [12] | YAN Shoucheng, ZHANG Huihua, XU Qianqian, WANG Yukun. Application of graphene composite supported catalyst in the removal of NO from diesel exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1456-1465. |
| [13] | CHEN Linlin, YU Fei, Ma JIE. Preparation of wood-based cellulose/graphene separation membrane and pollutant separation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1584-1592. |
| [14] | WANG Yansen, HOU Dandan, LI Changjin, QI Liya, WANG Chunyao, GUO Min, WANG Ying. Preparation and properties of graphene oxide/polyacrylic acid conductive and adhesive hydrogels [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1022-1032. |
| [15] | HAUNG Wendi, ZHOU Guobing, CAO Baoxin. Molecular dynamics simulation of interface thermal resistance of graphene/sodium acetate trihydrate composite phase change material [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6820-6827. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |