Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6350-6358.DOI: 10.16085/j.issn.1000-6613.2024-1554
• Industrial catalysis • Previous Articles
MAO Bo(
), GAO Jianguang, XIE Yonggang, OUYANG Zhiming, MA Rui, ZHAO Kun, LU Jiangyin(
)
Received:2024-09-24
Revised:2025-03-05
Online:2025-12-08
Published:2025-11-25
Contact:
LU Jiangyin
毛波(
), 高建广, 谢永刚, 欧阳志明, 马睿, 赵堃, 陆江银(
)
通讯作者:
陆江银
作者简介:毛波(1994—),男,硕士研究生,研究方向为石油天然气多相催化转化。E-mail:Bom_xju@163.com。
基金资助:CLC Number:
MAO Bo, GAO Jianguang, XIE Yonggang, OUYANG Zhiming, MA Rui, ZHAO Kun, LU Jiangyin. Effect of Mg incorporation amount on the propane dehydrogenation performance of Co/SBA-15 catalyst[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6350-6358.
毛波, 高建广, 谢永刚, 欧阳志明, 马睿, 赵堃, 陆江银. Mg掺入量对Co/SBA-15催化剂丙烷脱氢性能的影响[J]. 化工进展, 2025, 44(11): 6350-6358.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1554
| 样品 | Co质量分数/% | Mg质量分数/% |
|---|---|---|
| Co-1.0Mg/SBA-15 | 1.95 | 1.00 |
| Co-1.5Mg/SBA-15 | 1.97 | 1.43 |
| Co-2.0Mg/SBA-15 | 1.97 | 1.96 |
| Co-2.5Mg/SBA-15 | 2.00 | 2.52 |
| Co-3.0Mg/SBA-15 | 2.00 | 3.03 |
| 样品 | Co质量分数/% | Mg质量分数/% |
|---|---|---|
| Co-1.0Mg/SBA-15 | 1.95 | 1.00 |
| Co-1.5Mg/SBA-15 | 1.97 | 1.43 |
| Co-2.0Mg/SBA-15 | 1.97 | 1.96 |
| Co-2.5Mg/SBA-15 | 2.00 | 2.52 |
| Co-3.0Mg/SBA-15 | 2.00 | 3.03 |
| 样品 | SBET/m2·g-1 | SMicro/m2·g-1 | SMeso/m2·g-1 | VTotal/cm3·g-1 | MDHK/nm | MDBJH/nm |
|---|---|---|---|---|---|---|
| Co-1.0Mg/SBA-15 | 505.0 | 24.01 | 480.99 | 0.930 | 0.50 | 8.20 |
| Co-1.5Mg/SBA-15 | 486.4 | 27.32 | 459.08 | 0.948 | 0.53 | 9.40 |
| Co-2.0Mg/SBA-15 | 488.1 | 21.28 | 466.82 | 0.925 | 0.55 | 8.10 |
| Co-2.5Mg/SBA-15 | 441.7 | 21.91 | 419.81 | 0.838 | 0.57 | 8.31 |
| Co-3.0Mg/SBA-15 | 445.1 | 24.91 | 420.21 | 0.866 | 0.56 | 8.19 |
| Co/SBA-15 | 578.8 | 50.24 | 528.56 | 0.981 | 0.59 | 9.31 |
| 样品 | SBET/m2·g-1 | SMicro/m2·g-1 | SMeso/m2·g-1 | VTotal/cm3·g-1 | MDHK/nm | MDBJH/nm |
|---|---|---|---|---|---|---|
| Co-1.0Mg/SBA-15 | 505.0 | 24.01 | 480.99 | 0.930 | 0.50 | 8.20 |
| Co-1.5Mg/SBA-15 | 486.4 | 27.32 | 459.08 | 0.948 | 0.53 | 9.40 |
| Co-2.0Mg/SBA-15 | 488.1 | 21.28 | 466.82 | 0.925 | 0.55 | 8.10 |
| Co-2.5Mg/SBA-15 | 441.7 | 21.91 | 419.81 | 0.838 | 0.57 | 8.31 |
| Co-3.0Mg/SBA-15 | 445.1 | 24.91 | 420.21 | 0.866 | 0.56 | 8.19 |
| Co/SBA-15 | 578.8 | 50.24 | 528.56 | 0.981 | 0.59 | 9.31 |
| 样品 | 耗氢量/mmol·g-1 |
|---|---|
| Co-1.0Mg/SBA-15 | 0.135 |
| Co-1.5Mg/SBA-15 | 0.111 |
| Co-2.0Mg/SBA-15 | 0.109 |
| Co-2.5Mg/SBA-15 | 0.145 |
| Co-3.0Mg/SBA-15 | 0.155 |
| 样品 | 耗氢量/mmol·g-1 |
|---|---|
| Co-1.0Mg/SBA-15 | 0.135 |
| Co-1.5Mg/SBA-15 | 0.111 |
| Co-2.0Mg/SBA-15 | 0.109 |
| Co-2.5Mg/SBA-15 | 0.145 |
| Co-3.0Mg/SBA-15 | 0.155 |
| 项目 | Co的表面组分(摩尔分数)/% | ||
|---|---|---|---|
| Co0(780.1eV) | Co3+(781.5eV) | Co2+(782.8eV) | |
| 还原后 | 31.90 | 30.00 | 39.10 |
| 还原前 | 30.16 | 33.53 | 36.31 |
| 项目 | Co的表面组分(摩尔分数)/% | ||
|---|---|---|---|
| Co0(780.1eV) | Co3+(781.5eV) | Co2+(782.8eV) | |
| 还原后 | 31.90 | 30.00 | 39.10 |
| 还原前 | 30.16 | 33.53 | 36.31 |
| [1] | LONG Jiangping, TIAN Suyang, WEI Sheng, et al. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites[J]. Applied Surface Science, 2023, 614: 156238. |
| [2] | MICHORCZYK Piotr, OGONOWSKI Jan, Piotr KUŚTROWSKI, et al. Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2 [J]. Applied Catalysis A: General, 2008, 349(1/2): 62-69. |
| [3] | ZHANG Yiwei, ZHOU Yuming, HUANG Li, et al. Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7896-7902. |
| [4] | GRANT Joseph T, LOVE Alyssa M, CARRERO Carlos A, et al. Improved supported metal oxides for the oxidative dehydrogenation of propane[J]. Topics in Catalysis, 2016, 59(17): 1545-1553. |
| [5] | KUMAR Pankaj, SRIVASTAVA Vimal Chandra. Elucidation of catalytic propane dehydrogenation using theoretical and experimental approaches: Advances and outlook[J]. Energy & Fuels, 2023, 37(23): 18369-18394. |
| [6] | 张孟旭, 王红琴, 李金, 等. PtSn/MgAl2O4-sheet催化剂的制备及其PDH反应性能[J]. 化工进展, 2023, 42(3): 1365-1372. |
| MENGXU ZHANG, HONGQIN WANG, JIN LI, et al. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reactionperformance[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. | |
| [7] | 张永祥, 王德龙, 郭晓燕, 等. CrO x /Ti-Al2O3催化剂结构及其催化丙烷脱氢性能[J]. 化工进展, 2022, 41(11): 5879-5886. |
| ZHANG Yongxiang, WANG Delong, GUO Xiaoyan, et al. Structure and performance of CrO x /Ti-Al2O3 catalysts for propanedehydrogenation[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5879-5886. | |
| [8] | ZHAO Dan, GUO Ke, HAN Shanlei, et al. Controlling reaction-induced loss of active sites in ZnO x /silicalite-1 for durable nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(8): 4608-4617. |
| [9] | ZHANG Yaoyuan, ZHAO Yun, OTROSHCHENKO Tatiana, et al. The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation[J]. Journal of Catalysis, 2019, 371: 313-324. |
| [10] | FAN Xiaoqiang, LIU Dandan, ZHAO Zhen, et al. Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane[J]. Catalysis Today, 2020, 339: 67-78. |
| [11] | CHEN Chong, SUN Minglei, HU Zhongpan, et al. Nature of active phase of VO x catalysts supported on SiBeta for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2020, 41(2): 276-285. |
| [12] | PHADKE Neelay M., MANSOOR Erum, BONDIL Matthieu, et al. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3 [J]. Journal of the American Chemical Society, 2019, 141(4): 1614-1627. |
| [13] | LIOTTA L F, PANTALEO G, MACALUSO A, et al. CoO x catalysts supported on alumina and alumina-baria: Influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions[J]. Applied Catalysis A: General, 2003, 245(1): 167-177. |
| [14] | BIAN Zhoufeng, DEWANGAN Nikita, WANG Zhigang, et al. Mesoporous-silica-stabilized cobalt(Ⅱ) oxide nanoclusters for propane dehydrogenation[J]. ACS Applied Nano Materials, 2021, 4(2): 1112-1125. |
| [15] | HU Zhongpan, WANG Yansu, YANG Dandan, et al. CrO x supported on high-silica HZSM-5 for propane dehydrogenation[J]. Journal of Energy Chemistry, 2020, 47: 225-233. |
| [16] | FAN Xiaoqiang, YANG Ying, SONG Jiaxin, et al. Stable Pt catalysts anchored by Mn-SBA-15 support for propane dehydrogenation[J]. Applied Catalysis A: General, 2024, 670: 119559. |
| [17] | 于雪. Pt、Mg助剂对Co/Silicalite-1催化剂丙烷脱氢性能影响的研究[D]. 北京: 中国石油大学, 2021. |
| YU Xue. Study on the effect of Pt and Mg promoters on the performance of Co/Silicalite-1 catalyst for propane dehydrogenation[D]. Beijing: China University Of Petroleum, 2021. | |
| [18] | HUANG Lihua, XU Bolian, YANG Lili, FAN Yining. Propane dehydrogenation over the PtSn catalyst supported on alumina-modified SBA-15[J]. Catalysis Communications, 2008, 9(15): 2593-2597. |
| [19] | ZHU Junjiang, ZHAO Zhen, XIAO Dehai, et al. Study of La2- x Sr x CuO4 (x=0, 0.5, 1.0) catalysts for NO+CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry[J]. Journal of Molecular Catalysis A: Chemical, 2005, 238(1): 35-40. |
| [20] | KIM Kang Min, KWAK Byeong Sub, Younghwan IM, et al. Effective hydrogen production from ethanol steam reforming using CoMg co-doped SiO2@Co1- x Mg x O catalyst[J]. Journal of Industrial and Engineering Chemistry, 2017, 51: 140-152. |
| [21] | LI Dalin, LU Miaomiao, XU Shuping, et al. Preparation of supported Co catalysts from Co-Mg-Al layered double hydroxides for carbon dioxide reforming of methane[J]. International Journal of Hydrogen Energy, 2017, 42(8): 5063-5071. |
| [22] | Rune LØDENG, Erlend BJØRGUM, ENGER Bjørn Christian, et al. Catalytic partial oxidation of CH4 to H2 over cobalt catalysts at moderate temperatures[J]. Applied Catalysis A: General, 2007, 333(1): 11-23. |
| [23] | JACOBS Gary, Tapan K. DAS, ZHANG Yongqing, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Applied Catalysis A: General, 2002, 233(1): 263-281. |
| [24] | WANG Lei, LI Dalin, WATANABE Hideo, et al. Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass[J]. Applied Catalysis B: Environmental, 2014, 150-151: 82-92. |
| [25] | JEON Namgi, Jungmok OH, TAYAL Akhil, et al. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation[J]. Journal of Catalysis, 2021, 404: 1007-1016. |
| [26] | CHEN Chong, ZHANG Shoumin, WANG Zheng, et al. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2020, 383: 77-87. |
| [27] | XU Yuebing, YU Wenda, ZHANG Hao, et al. Suppressing C-C bond dissociation for efficient ethane dehydrogenation over the isolated Co(Ⅱ) sites in SAPO-34[J]. ACS Catalysis, 2021, 11(21): 13001-13019. |
| [28] | 葛蒙. 非贵金属钴基催化剂制备及其在丙烷脱氢反应中的研究[D]. 天津: 天津大学, 2020. |
| GE Meng. Preparation of non-precious metal cobalt-based catalysts and research on theirapplication in propane dehydrogenation[D]. Tianjin: Tianjin University, 2020. | |
| [29] | LIANG Chunhong, ZHANG Xiaodan, FENG Ping, et al. ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics[J]. Chemical Engineering Journal, 2018, 344: 95-104. |
| [1] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [2] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [3] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [4] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [5] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [6] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [7] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [8] | LIU Chao, DING Chengao, WU Baoshun, LEI Xinyu, WANG Guangying, YU Zhengwei. Effect of TiO2 support particle size on the denitrification and water/sulfur poisoning resistance of RuO x -V2O5-WO3/TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 232-242. |
| [9] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [10] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [11] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [12] | WANG Maoren, ZHAO Anyang, YU Jingwen, SHI Hanfeng, HUANG Qipiao, WANG Shihe. Thermal desorption treatment process of waste clay and its hazardous characteristics of residues [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5442-5449. |
| [13] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [14] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [15] | YUAN Bo, GOU Jiaxuan, LI Yuzhuang, LIU Qun, XU Kun, ZHANG Yu. Carbonized ZIF-67 incorporated PDMS mixed matrix membranes on ceramic tubes for recovery of ethanol via pervaporation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5211-5223. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |