Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3072-3083.DOI: 10.16085/j.issn.1000-6613.2024-1357
• Special column: Frontiers of interdisciplinary technologies in chemical engineering and environmental sciences • Previous Articles
WANG Yuting(
), WANG Mengxiang, LI Wenwen, LI Gang, WANG Yajun(
)
Received:2024-08-19
Revised:2024-11-12
Online:2025-07-08
Published:2025-06-25
Contact:
WANG Yajun
通讯作者:
王雅君
作者简介:王宇婷(1990—),女,讲师,研究方向为光催化、光电催化、纳米材料合成。E-mail:wangyt@cup.edu.cn。
基金资助:CLC Number:
WANG Yuting, WANG Mengxiang, LI Wenwen, LI Gang, WANG Yajun. Photo-Fenton synergistic degradation of tetracycline by Fe(Ⅲ)/3D conjugated carbon nitride system[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3072-3083.
王宇婷, 王梦祥, 李文文, 李港, 王雅君. Fe(Ⅲ)/3D氮化碳共轭体系光芬顿协同降解四环素[J]. 化工进展, 2025, 44(6): 3072-3083.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1357
| 催化剂 | 比表面积/m2∙g-1 | 孔体积/cm3∙g-1 | 平均孔径/nm |
|---|---|---|---|
| bulk g-C3N4 | 13.5 | 0.09 | 38.7 |
| 3D g-C3N4-Nv | 49.0 | 0.19 | 19.4 |
| 3D g-C3N4-Nv/0.5% Fe3+ | 77.4 | 0.50 | 29.4 |
| 3D g-C3N4-Nv/1% Fe3+ | 70.7 | 0.42 | 27.0 |
| 3D g-C3N4-Nv/1.5% Fe3+ | 61.1 | 0.39 | 29.3 |
| 3D g-C3N4-Nv/2% Fe3+ | 59.4 | 0.38 | 29.5 |
| 催化剂 | 比表面积/m2∙g-1 | 孔体积/cm3∙g-1 | 平均孔径/nm |
|---|---|---|---|
| bulk g-C3N4 | 13.5 | 0.09 | 38.7 |
| 3D g-C3N4-Nv | 49.0 | 0.19 | 19.4 |
| 3D g-C3N4-Nv/0.5% Fe3+ | 77.4 | 0.50 | 29.4 |
| 3D g-C3N4-Nv/1% Fe3+ | 70.7 | 0.42 | 27.0 |
| 3D g-C3N4-Nv/1.5% Fe3+ | 61.1 | 0.39 | 29.3 |
| 3D g-C3N4-Nv/2% Fe3+ | 59.4 | 0.38 | 29.5 |
| 催化剂 | B1/% | B2/% | τ1/ns | τ2/ns | Ave. τ/ns |
|---|---|---|---|---|---|
| bulk g-C3N4 | 62.95 | 37.05 | 2.12 | 14.03 | 11.60 |
| 3D g-C3N4-Nv | 48.28 | 51.72 | 2.97 | 19.92 | 17.85 |
| 3D g-C3N4-Nv/0.5%Fe | 45.32 | 50.48 | 3.08 | 20.29 | 18.23 |
| 3D g-C3N4-Nv/1.0%Fe | 47.15 | 51.32 | 3.21 | 20.58 | 18.40 |
| 3D g-C3N4-Nv/1.5%Fe | 48.81 | 51.19 | 3.20 | 20.70 | 18.45 |
| 3D g-C3N4-Nv/2.0%Fe | 46.53 | 52.29 | 3.17 | 19.97 | 17.89 |
| 催化剂 | B1/% | B2/% | τ1/ns | τ2/ns | Ave. τ/ns |
|---|---|---|---|---|---|
| bulk g-C3N4 | 62.95 | 37.05 | 2.12 | 14.03 | 11.60 |
| 3D g-C3N4-Nv | 48.28 | 51.72 | 2.97 | 19.92 | 17.85 |
| 3D g-C3N4-Nv/0.5%Fe | 45.32 | 50.48 | 3.08 | 20.29 | 18.23 |
| 3D g-C3N4-Nv/1.0%Fe | 47.15 | 51.32 | 3.21 | 20.58 | 18.40 |
| 3D g-C3N4-Nv/1.5%Fe | 48.81 | 51.19 | 3.20 | 20.70 | 18.45 |
| 3D g-C3N4-Nv/2.0%Fe | 46.53 | 52.29 | 3.17 | 19.97 | 17.89 |
| [1] | 于晓雯, 索全义. 畜禽粪便中四环素类抗生素的残留及危害[J]. 北方农业学报, 2018, 46(3): 83-88. |
| YU Xiaowen, SUO Quanyi. Residues and hazards of tetracycline antibiotics in livestock and poultry manure[J]. Journal of Northern Agriculture, 2018, 46(3): 83-88. | |
| [2] | 石浩, 蔡柏岩. 四环素类抗生素胁迫下土壤细菌菌群响应机制的研究进展[J]. 环境污染与防治, 2024, 46(7): 1028-1034. |
| SHI Hao, CAI Baiyan. Research progress on response mechanisms of soil bacterial flora under tetracycline antibiotics stress[J]. Environmental Pollution & Control, 2024, 46(7): 1028-1034. | |
| [3] | 谢晋, 陈小飞, 张敏敏, 等. 水中四环素类抗生素的污染现状及其去除技术研究进展[J]. 环保科技, 2024, 30(2): 60-64. |
| XIE Jin, CHEN Xiaofei, ZHANG Minmin, et al. Research progress in pollution status and removal technology for tetracycline antibiotics in water[J]. Environmental Protection and Technology, 2024, 30(2): 60-64. | |
| [4] | 天津农学院. AEO-7酞菁铁催化降解四环素的方法及应用: CN202310377238.5[P]. 2023-06-30. |
| Tianjin Agricultural University. Method and application of catalytic degradation of tetracycline by AEO-7 phthalocyanine iron: CN202310377238.5[P]. 2023-06-30. | |
| [5] | 西安建筑科技大学. 豆渣负载铁铜催化材料、 制备方法及降解四环素的方法: CN202311535367.9[P]. 2024-03-19. |
| Xi’an University of Architecture and Technology. Soybean dregs loaded iron-copper catalytic materials, preparation method and degradation method of tetracycline: CN202311535367.9[P]. 2024-03-19. | |
| [6] | 李玲玲, 黄利东, 霍嘉恒, 等. 土壤和堆肥中四环素类抗生素的检测方法优化及其在土壤中的降解研究[J]. 植物营养与肥料学报, 2010, 16(5): 1176-1182. |
| LI Lingling, HUANG Lidong, HUO Jiaheng, et al. Method optimization for determination of tetracyclines in soils and compost and their degradation in soils[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1176-1182. | |
| [7] | 高婉茹, 李跑, 黄昭, 等. 磁性分子印迹纳米粒子对四环素的富集分离[J]. 食品研究与开发, 2019, 40(24): 1-5. |
| GAO Wanru, LI Pao, HUANG Zhao, et al. Enrichment and separation of tetracycline by magnetic molecularly imprinted polymers nanoparticles[J]. Food Research and Development, 2019, 40(24): 1-5. | |
| [8] | 李微, 宁雨阳, 刘宁, 等. PEO基MOFs杂化泡沫材料对四环素和Cu2+吸附性能[J]. 环境工程, 2023, 41(7): 76-85. |
| LI Wei, NING Yuyang, LIU Ning, et al. Adsorption performance of peo-based MOFs hybrid foam materials on tetracycline and Cu2+ [J]. Environmental Engineering, 2023, 41(7): 76-85. | |
| [9] | 唐文元, 兰贵红, 邱海燕, 等. 磁性氧化锆复合材料对水中四环素的吸附[J]. 山东化工, 2022, 51(5): 5-10. |
| TANG Wenyuan, LAN Guihong, QIU Haiyan, et al. Preparation of magnetic zirconium dioxide composites and its adsorption for tetracycline in water[J]. Shandong Chemical Industry, 2022, 51(5): 5-10. | |
| [10] | 朱斌, 钟理. 高级氧化技术降解水中环境激素的研究进展[J]. 工业水处理, 2008, 28(1): 5-8. |
| ZHU Bin, ZHONG Li. Progress of the degradation of environmental hormone in water by advanced oxidation technologies[J]. Industrial Water Treatment, 2008, 28(1): 5-8. | |
| [11] | 叶林静, 关卫省, 李宇亮. 高级氧化技术降解双酚A的研究进展[J]. 化工进展, 2013, 32(4): 909-918. |
| YE Linjing, GUAN Weisheng, LI Yuliang. Research advances in bisphenol A degraded by advanced oxidation processes[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 909-918. | |
| [12] | 杨直渝, 朱科, 许镇浩, 等. 基于过硫酸盐高级氧化技术降解抗生素的研究进展[J]. 能源环境保护, 2023, 37(5): 1-14. |
| YANG Zhiyu, ZHU Ke, XU Zhenhao, et al. Research advance on the degradation of antibiotics through advanced oxidation technology using persulfate[J]. Energy Environmental Protection, 2023, 37(5): 1-14. | |
| [13] | 田蒙奎, 尚百伟, 陶文亮. 光催化高级氧化与无机陶瓷膜分离技术耦合的研究[J]. 环境污染与防治, 2012, 34(11): 40-44. |
| TIAN Mengkui, SHANG Baiwei, TAO Wenliang. Study on the coupling of photocatalytic advanced oxidation process with inorganic membrane separation technology[J]. Environmental Pollution & Control, 2012, 34(11): 40-44. | |
| [14] | 周安然, 王永磊, 孙韶华, 等. 膜过滤耦合高级氧化技术去除水中抗生素的研究进展[J]. 膜科学与技术, 2019, 39(1): 110-115. |
| ZHOU Anran, WANG Yonglei, SUN Shaohua, et al. Removal of antibiotic in water by the coupling technique of membrane separation and advanced oxidation techniques(AOPs)—A review[J]. Membrane Science and Technology, 2019, 39(1): 110-115. | |
| [15] | 宋思扬, 赵焕新. 铁基催化剂应用于非均相光芬顿技术的研究进展[J]. 当代化工研究, 2019(3): 183-184. |
| SONG Siyang, ZHAO Huanxin. Research progress in application of iron-based catalysts to heterogeneous photo Fenton technology[J]. Modern Chemical Research, 2019(3): 183-184. | |
| [16] | SHAFAQ Sahar, AKIF Zeb, 刘亚男, 等. Fe3O4/g-C3N4复合催化剂增强芬顿/光-芬顿和类过氧化酶反应的活性及稳定性[J]. 催化学报, 2017, 38(12): 2110-2119. |
| SHAFAQ Sahar, AKIF Zeb, LIU Yanan, et al. Fe3O4/g-C3N4 composite catalyst enhances the activity and stability of Fenton/peroxy-Fenton and pseudo-peroxidase reactions[J]. Chinese Journal of Catalysis, 2017, 38(12): 2110-2119. | |
| [17] | 朱欢欢, 孙韶华, 冯桂学, 等. 紫外联用高级氧化技术处理饮用水应用进展[J]. 水处理技术, 2019, 45(3): 1-7. |
| ZHU Huanhuan, SUN Shaohua, FENG Guixue, et al. Research progress of ultraviolet combined advanced oxidation technology for drinking water treatment[J]. Technology of Water Treatment, 2019, 45(3): 1-7. | |
| [18] | REYES C, FERNÁNDEZ J, FREER J, et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1/2): 141-146. |
| [19] | 郝琪, 苏斌. 类芬顿技术降解四环素研究进展[J]. 当代化工研究, 2023(16): 1-6. |
| HAO Qi, SU Bin. Research progress of Fenton-like technology for degradation of tetracycline[J]. Modern Chemical Research, 2023(16): 1-6. | |
| [20] | 周晓岚, 陈超强, 李炜敏, 等. 芬顿技术处理水中难降解有机污染物的研究进展[J]. 山东化工, 2024, 53(1): 262-264. |
| ZHOU Xiaolan, CHEN Chaoqiang, LI Weimin, et al. Research progress of Fenton technology for treatment of pollutants in water[J]. Shandong Chemical Industry, 2024, 53(1): 262-264. | |
| [21] | PANNERI Suyana, GANGULY Priyanka, NAIR Balagopal N, et al. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8609-8618. |
| [22] | THOMAS Arne, FISCHER Anna, GOETTMANN Frederic, et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908. |
| [23] | FAN Xiangqian, XING Zheng, SHU Zhu, et al. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution[J]. RSC Advances, 2015, 5(11): 8323-8328. |
| [24] | DONG Fan, ZHAO Zaiwang, XIONG Ting, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11392-11401. |
| [25] | REN Haitao, JIA Shaoyi, WU Yan, et al. Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17645-17653. |
| [26] | YE Sheng, WANG Rong, WU Mingzai, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Applied Surface Science, 2015, 358: 15-27. |
| [27] | 姜鹏程, 王周福, 王玺堂, 等. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053. |
| JIANG Pengcheng, WANG Zhoufu, WANG Xitang, et al. Synthesis of graphite-like carbon nitride in different atmospheres and its thermal stability[J]. Materials Reports, 2021, 35(6): 6048-6053. | |
| [28] | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
| [29] | WANG Jiangpeng, LI Changqing, CONG Jingkun, et al. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance[J]. Journal of Solid State Chemistry, 2016, 238: 246-251. |
| [30] | SHIRAISHI Yasuhiro, KOFUJI Yusuke, SAKAMOTO Hirokatsu, et al. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation[J]. ACS Catalysis, 2015, 5(5): 3058-3066. |
| [31] | Honghui OU, YANG Pengju, LIN Lihua, et al. Carbon nitride aerogels for the photoredox conversion of water[J]. Angewandte Chemie International Edition, 2017, 56(36): 10905-10910. |
| [32] | 葛玉杰, 吴姣, 王国华, 等. 多孔石墨相氮化碳的制备及对U(Ⅵ)的吸附机理研究[J]. 原子能科学技术, 2021, 55(4): 603-611. |
| GE Yujie, WU Jiao, WANG Guohua, et al. Preparation of porous graphite phase carbon nitride and its adsorption property for U(Ⅵ)[J]. Atomic Energy Science and Technology, 2021, 55(4): 603-611. | |
| [33] | 巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模板法发展[J]. 工程科学学报, 2021, 43(3): 345-354. |
| GONG Zhengqi, YAN Chuxuan, XUAN Zhiyi, et al. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride[J]. Chinese Journal of Engineering, 2021, 43(3): 345-354. | |
| [34] | 侯建华, 蔡瑞, 沈明, 等. 多孔纳米片状石墨相氮化碳的制备及其可见光催化[J]. 无机化学学报, 2018, 34(3): 467-474. |
| HOU Jianhua, CAI Rui, SHEN Ming, et al. Preparation and visible light photocatalysis of porous nanosheet graphitic carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(3): 467-474. | |
| [35] | 李嗣扬, 曹仲, 申文娟, 等. Fe1- x S-BC/g-C3N4的制备及其光芬顿降解盐酸四环素的性能[J]. 环境化学, 2023, 42(12): 4442-4452. |
| LI Siyang, CAO Zhong, SHEN Wenjuan, et al. Fabrication of Fe1- x S-BC/g-C3N4 and its heterogeneous photo-Fenton degradation effect of tetracycline hydrochloride[J]. Environmental Chemistry, 2023, 42(12): 4442-4452. | |
| [36] | 杨在卿, 倪晓玺, 孙亚鑫, 等. CdS/Fe2S3复合物的制备及其光芬顿催化降解环丙沙星[J]. 山东化工, 2023, 52(17): 15-17. |
| YANG Zaiqing, NI Xiaoxi, SUN Yaxin, et al. Preparation of Fe-CdS and photo-Fenton catalytic degradation of ciprofloxacin[J]. Shandong Chemical Industry, 2023, 52(17): 15-17. | |
| [37] | 郭威. 光催化协同Fenton技术有效降解水中有机污染物的应用研究进展[J]. 山西化工, 2024, 44(6): 42-44. |
| GUO Wei. Research progress of photocatalysis-Fenton system for efficient degradation of organic pollutants[J]. Shanxi Chemical Industry, 2024, 44(6): 42-44. | |
| [38] | 陈顺通, 王欢, 崔文权. 铁掺杂硫化铋光芬顿降解有机污染物[J]. 分子催化(中英文), 2024, 38(1): 17-25. |
| CHEN Shuntong, WANG Huan, CUI Wenquan. Iron-doped bismuth sulfide PhotoFenton degrades organic pollutants[J]. Journal of Molecular Catalysis (China), 2024, 38(1): 17-25. | |
| [39] | 李涛, 王华, 徐佳军, 等. MIL-100(Fe)光芬顿催化剂的制备与循环使用研究[J]. 功能材料, 2024, 55(5): 5147-5151. |
| LI Tao, WANG Hua, XU Jiajun, et al. Preparation of MIL-100(Fe) photo-Fenton catalysts and their recyclability[J]. Journal of Functional Materials, 2024, 55(5): 5147-5151. | |
| [40] | 游小银, 汪楚乔, 刘才华, 等. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
| YOU Xiaoyin, WANG Chuqiao, LIU Caicai, et al. Construction of Z type CN/NGBO/BV catalyst system and its photoFenton degradation performance of tetracycline[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
| [1] | SHI Xiuding, WANG Yongquan, ZENG Jing, SU Chang, HONG Junming. Nanotubular Co-N-C activated percarbonate for tetracycline degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3041-3052. |
| [2] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [3] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
| [4] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
| [5] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
| [6] | LUO Zhen, WANG Qingji, WANG Zhansheng, YANG Xueying, XIE Jiacai, WANG Hao. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. |
| [7] | SHI Jiating, WANG Hui, PU Kaikai, ZHAO Ting, NIE Lijun, ZHENG Na, GAO Yuhang, XUE Kunkun, SHI Jianhui. Enhanced hydrogen peroxide production performance in visible light from ultra-thin g-C3N4 nanosheets with carbon vacancies [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4148-4154. |
| [8] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
| [9] | ZENG Xiangchu, MO Zhenrong, YIN Xiuju, WU Zhe. Synergistic adsorption mechanism of aqueous Cu(Ⅱ) and TC by N and S co-doped biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7004-7017. |
| [10] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
| [11] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
| [12] | LIU Fei, CHEN Zhe, CHEN Feng. Carbon nitride grafting of L-glutamine molecules for boosting the photocatalytic H2 production and degradation activity [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6372-6382. |
| [13] | KE Yuxin, ZHU Xiaoli, SI Shaocheng, ZHANG Ting, WANG Junqiang, ZHANG Ziye. Adsorbent derived from spent bleaching earth for the synergistic removal of tetracycline and copper in wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5981-5992. |
| [14] | SONG Yali, LI Ziyan, YANG Cairong, HUANG Long, ZHANG Hongzhong. Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309. |
| [15] | CHEN Yu, WANG Jiajia, TANG Lin. Preparation and performance of floating carbon nitride photocatalyst CNx@mEP [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6477-6488. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |