Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6372-6382.DOI: 10.16085/j.issn.1000-6613.2023-0191
• Industrial catalysis • Previous Articles
LIU Fei1(), CHEN Zhe1(), CHEN Feng2
Received:
2023-02-14
Revised:
2023-04-13
Online:
2024-01-08
Published:
2023-12-25
Contact:
CHEN Zhe
通讯作者:
陈哲
作者简介:
刘飞(1996—),男,硕士研究生,研究方向为光催化剂制备及性能。E-mail:997473167@qq.com。
基金资助:
CLC Number:
LIU Fei, CHEN Zhe, CHEN Feng. Carbon nitride grafting of L-glutamine molecules for boosting the photocatalytic H2 production and degradation activity[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6372-6382.
刘飞, 陈哲, 陈峰. 氮化碳接枝L-谷氨酰胺分子实现高效光催化产氢和降解性能[J]. 化工进展, 2023, 42(12): 6372-6382.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0191
样品 | 尿素/g | L-谷氨酰胺/mg | 水/mL |
---|---|---|---|
LCN-5 | 5 | 5 | 10 |
LCN-10 | 5 | 10 | 10 |
LCN-30 | 5 | 30 | 10 |
LCN-50 | 5 | 50 | 10 |
样品 | 尿素/g | L-谷氨酰胺/mg | 水/mL |
---|---|---|---|
LCN-5 | 5 | 5 | 10 |
LCN-10 | 5 | 10 | 10 |
LCN-30 | 5 | 30 | 10 |
LCN-50 | 5 | 50 | 10 |
样品 | 常数A1 | 指数成分寿命τ1/ns | A1τ1/ns | 常数A2 | 指数成分寿命τ2/ns | A2τ2/ns | τa/ns |
---|---|---|---|---|---|---|---|
CN | 2306.23 | 0.86 | 2001.81 | 956.80 | 3.69 | 3530.61 | 2.07 |
LCN | 2346.58 | 1.75 | 4106.51 | 955.18 | 6.42 | 6132.29 | 3.70 |
样品 | 常数A1 | 指数成分寿命τ1/ns | A1τ1/ns | 常数A2 | 指数成分寿命τ2/ns | A2τ2/ns | τa/ns |
---|---|---|---|---|---|---|---|
CN | 2306.23 | 0.86 | 2001.81 | 956.80 | 3.69 | 3530.61 | 2.07 |
LCN | 2346.58 | 1.75 | 4106.51 | 955.18 | 6.42 | 6132.29 | 3.70 |
1 | BAGAL I V, CHODANKAR N R, MOSTAFA A H, et al. Cu2O as an emerging photocathode for solar water splitting—A status review[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21351-21378. |
2 | ZHAO Xin, FAN Yingying, ZHANG Wensheng, et al. Nanoengineering construction of Cu2O nanowire arrays encapsulated with g-C3N4 as 3D spatial reticulation all-solid-state direct Z-scheme photocatalysts for photocatalytic reduction of carbon dioxide[J]. ACS Catalysis, 2020, 10(11): 6367-6376. |
3 | HU Jinsong, REN Lingling, GUO Yuguo, et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(8): 1269-1273. |
4 | RAMALINGAM G, MAGDALANE C M, KUMAR B A, et al. Enhanced visible light-driven photocatalytic performance of CdSe nanorods[J]. Environmental Research, 2022, 203: 111855. |
5 | IRIE H, WATANABE Y, HASHIMOTO K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J]. Chemistry Letters, 2003, 32(8): 772-773. |
6 | CHAI Bo, LIAO Xiang, SONG Fakun, et al. Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation[J]. Dalton Transactions, 2014, 43(3): 982-989. |
7 | KONG Linggang, DONG Yuming, JIANG Pingping, et al. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water[J]. Journal of Materials Chemistry A, 2016, 4(25): 9998-10007. |
8 | YUAN Jielin, WEN Jiuqing, ZHONG Yongming, et al. Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions[J]. Journal of Materials Chemistry A, 2015, 3(35): 18244-18255. |
9 | HE C, LIANG Y, ZHANG W X. Constructing a novel metal-free g-C3N4/g-CN vdW heterostructure with enhanced visible-light-driven photocatalytic activity for water splitting[J]. Applied Surface Science, 2021, 553: 149550. |
10 | KAILASAM K, EPPING J D, THOMAS A, et al. Mesoporous carbon nitride-silica composites by a combined sol-gel/thermal condensation approach and their application as photocatalysts[J]. Energy & Environmental Science, 2011, 4(11): 4668-4674. |
11 | YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6): 3894-3901. |
12 | ZHANG Jiye, WANG Yonghao, JIN Jian, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10317-10324. |
13 | WANG Xinchen, CHEN Xiufang, FU Xianzhi, et al. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material[J]. Advanced Materials, 2009, 21(16): 1609-1612. |
14 | AN Xiaoqiang, TANG Qingwen, LAN Huachun, et al. Facilitating molecular activation and proton feeding by dual active sites on polymeric carbon nitride for efficient CO2 photoreduction[J]. Angewandte Chemie International Edition, 2022, 61(46): e202212706. |
15 | 陈毓, 王佳佳, 汤琳. 漂浮型氮化碳光催化剂CN x @mEP的制备及性能[J]. 化工进展, 2022, 41(12): 6477-6488. |
CHEN Yu, WANG Jiajia, TANG Lin. Preparation and performance of floating carbon nitride photocatalyst CN x @mEP[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6477-6488. | |
16 | 常明, 武玉洁, 张海燕, 等. 硬脂酸C ̿ O伸缩振动二维相关红外光谱研究[J]. 化学试剂, 2014, 36(12): 1098-1100. |
CHANG Ming, WU Yujie, ZHANG Haiyan, et al. Two-dimensional infrared spectroscopy of stearic acid C ̿ O stretch vibration[J]. Chemical Reagents, 2014, 36(12): 1098-1100. | |
17 | MENG Aiyun, ZHOU Shuang, WEN Da, et al. G-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting[J]. Chinese Journal of Catalysis, 2022, 43(10): 2548-2557. |
18 | WANG Pengfei, LIU Yao, JIANG Ning, et al. Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability[J]. Journal of Molecular Liquids, 2021, 329: 115540. |
19 | XING Weinan, MA Fang, LI Zongjun, et al. Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity[J]. Journal of Materials Chemistry A, 2022, 10(35): 18333-18342. |
20 | WU Baogang, ZHANG Liping, JIANG Baojiang, et al. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation[J]. Angewandte Chemie International Edition, 2021, 60(9): 4815-4822. |
21 | ZHANG Xu, MA Peijie, WANG Cong, et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution[J]. Energy & Environmental Science, 2022, 15(2): 830-842. |
22 | LI Chunmei, WU Huihui, ZHU Daqiang, et al. High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2021, 297: 120433. |
23 | CHU Yiching, LIN Tzu-Jen, LIN Yanru, et al. Influence of P, S, O-doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study[J]. Carbon, 2020, 169: 338-348. |
24 | 何源, 许磊, 夏仡, 等. 碳量子点修饰g-C3N4/SnO2复合材料光催化性能[J]. 化工进展, 2021, 40(2): 908-916. |
HE Yuan, XU Lei, XIA Yi, et al. Photocatalytic performance of carbon quantum dots modified g-C3N4/SnO2 composites[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 908-916. | |
25 | SHI Hongfei, JIN Tao, LI Jianping, et al. Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation[J]. Journal of Solid State Chemistry, 2022, 311: 123069. |
26 | AHMED M J, ISLAM M A, ASIF M, et al. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics[J]. Bioresource Technology, 2017, 243: 778-784. |
27 | SHI Hongfei, ZHU Hongwei, JIN Tao, et al. Construction of Bi/polyoxometalate doped TiO2 composite with efficient visible-light photocatalytic performance: Mechanism insight, degradation pathway and toxicity evaluation[J]. Applied Surface Science, 2023, 615: 156310. |
28 | CHEN Fei, YANG Qi, WANG Yali, et al. Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B: Environmental, 2017, 205: 133-147. |
29 | SHEN Rongchen, XIE Jun, LU Xinyong, et al. Bifunctional Cu3P decorated g-C3N4 nanosheets as a highly active and robust visible-light photocatalyst for H2 production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4026-4036. |
30 | YAO Chengkai, YUAN Aili, WANG Zhongsen, et al. Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(21): 13071-13079. |
31 | YUAN Aili, LEI Hua, WANG Zhongsen, et al. Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions[J]. Journal of Colloid and Interface Science, 2020, 560: 40-49. |
32 | MA Youliang, ZHANG Jing, WANG Yun, et al. Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions[J]. Journal of Advanced Research, 2019, 16: 135-143. |
33 | YAO Chengkai, WANG Ran, WANG Zhongsen, et al. Highly dispersive and stable Fe3+ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A, 2019, 7(48): 27547-27559. |
34 | CHEN Zhe, GAO Yuting, CHEN Feng, et al. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2021, 413: 127474. |
35 | GAO Shuyan, FENG Dekui, CHEN Feng, et al. Multi-functional well-dispersed pomegranate-like nanospheres organized by ultrafine ZnFe2O4 nanocrystals for high-efficiency visible-light-Fenton catalytic activities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129282. |
36 | LIU Chun, XIONG Minghui, CHAI Bo, et al. Construction of 2D/2D Ni2P/CdS heterojunctions with significantly enhanced photocatalytic H2 evolution performance[J]. Catalysis Science & Technology, 2019, 9(24): 6929-6937. |
37 | LI Chunhe, WANG Hongmei, NAGHADEH S B, et al. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures[J]. Applied Catalysis B: Environmental, 2018, 227: 229-239. |
38 | BAI Zhiming, YAN Xiaoqin, LI Yong, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research[J]. Advanced Energy Materials, 2016, 6(3): 1501459. |
39 | ZHAI Boyin, LI Hongguan, GAO Guangying, et al. A crystalline carbon nitride based near-infrared active photocatalyst[J]. Advanced Functional Materials, 2022, 32(47): 2207375. |
40 | MA Zhixue, ZONG Xupeng, HONG Qiang, et al. Electrostatic potential of the incorporated asymmetry molecules induced high charge separation efficiency of the modified carbon nitride copolymers[J]. Applied Catalysis B: Environmental, 2022, 319: 121922. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[4] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[5] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[6] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[7] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[8] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[9] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[10] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[11] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[12] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[13] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[14] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[15] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |