Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3869-3878.DOI: 10.16085/j.issn.1000-6613.2024-0799
• Energy processes and technology • Previous Articles
YANG Lanmei1(
), XU Bin2(
), LIU Huacai2, YANG Wenshen2, YIN Xiuli2, WU Chuangzhi2
Received:2024-05-13
Revised:2024-06-30
Online:2025-08-04
Published:2025-07-25
Contact:
XU Bin
杨岚梅1(
), 徐彬2(
), 刘华财2, 杨文申2, 阴秀丽2, 吴创之2
通讯作者:
徐彬
作者简介:杨岚梅(1997—),女,硕士研究生,研究方向为生物质焦油脱除。E-mail:ylm3509@163.com。
基金资助:CLC Number:
YANG Lanmei, XU Bin, LIU Huacai, YANG Wenshen, YIN Xiuli, WU Chuangzhi. Characterization of tar partial oxidative reforming by dielectric barrier discharge using mixed toluene and benzene as model compounds[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3869-3878.
杨岚梅, 徐彬, 刘华财, 杨文申, 阴秀丽, 吴创之. 介质阻挡放电部分氧化典型焦油组分混合物的转化特性[J]. 化工进展, 2025, 44(7): 3869-3878.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0799
| 项目 | M1 | M2 | M3 | M4 | M5 |
|---|---|---|---|---|---|
| 反应物 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 |
| 比例 | 1∶0 | 0.75∶0.25 | 0.5∶0.5 | 0.25∶0.75 | 0∶1 |
| 项目 | M1 | M2 | M3 | M4 | M5 |
|---|---|---|---|---|---|
| 反应物 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 | C6H6∶C7H8 |
| 比例 | 1∶0 | 0.75∶0.25 | 0.5∶0.5 | 0.25∶0.75 | 0∶1 |
| 等离子体 | 焦油 | 焦油浓度/g·m-3 | 载气 | 温度/℃ | 转化率/% | 能量效率/g·kW-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| DBD | C7H8 | 33.0 | H2 | 400 | 99.2 | 2.0 | [ |
| GAD | C7H8 | 14.0 | N2 | — | 83.2 | 16.6 | [ |
| DBD | C7H8 | 27.3 | 气化燃气+O2/N2+O2 | 300 | 100.0 | 25.7 | [ |
| GAD | C10H8 | 1.7 | N2+H2O | — | 85.0 | 5.7 | [ |
| DBD+Ni/Al2O3 | C7H8 | 17.7 | N2+H2O | < 200 | 52.0 | 2.6 | [ |
| RGAD+Ni/Al2O3 | C7H8 | 20.0 | N2+H2O | — | 93.5 | 20.4 | [ |
| DBD+Ni-HAP | C6H6 | 130.0 | N2+H2O | 400 | 92.1 | 8.5 | [ |
| DBD+Ni1Al3 | C7H8 | 180.0 | N2+H2O | 300 | 96.0 | 25.0 | [ |
| DBD | C6H6/C7H8 | 23.0 | N2+O2 | 300 | 98.2/100.0 | 34.2 | 本文 |
| 等离子体 | 焦油 | 焦油浓度/g·m-3 | 载气 | 温度/℃ | 转化率/% | 能量效率/g·kW-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| DBD | C7H8 | 33.0 | H2 | 400 | 99.2 | 2.0 | [ |
| GAD | C7H8 | 14.0 | N2 | — | 83.2 | 16.6 | [ |
| DBD | C7H8 | 27.3 | 气化燃气+O2/N2+O2 | 300 | 100.0 | 25.7 | [ |
| GAD | C10H8 | 1.7 | N2+H2O | — | 85.0 | 5.7 | [ |
| DBD+Ni/Al2O3 | C7H8 | 17.7 | N2+H2O | < 200 | 52.0 | 2.6 | [ |
| RGAD+Ni/Al2O3 | C7H8 | 20.0 | N2+H2O | — | 93.5 | 20.4 | [ |
| DBD+Ni-HAP | C6H6 | 130.0 | N2+H2O | 400 | 92.1 | 8.5 | [ |
| DBD+Ni1Al3 | C7H8 | 180.0 | N2+H2O | 300 | 96.0 | 25.0 | [ |
| DBD | C6H6/C7H8 | 23.0 | N2+O2 | 300 | 98.2/100.0 | 34.2 | 本文 |
| M1 | M3 | M5 | ||
|---|---|---|---|---|
| 2.82 | 苯 | 63.1 | 39.2 | 10.1 |
| 4.35 | 1.2 | 20.9 | 42.1 | |
| 6.03 | 乙苯 | — | — | 0.8 |
| 7.88 | 0.4 | 5.1 | 10.6 | |
| 7.92 | 苯乙醚 | 0.5 | 0.6 | 0.5 |
| 8.09 | 28.2 | 22.7 | 17.8 | |
| 8.26 | 苯甲腈 | 3.5 | 3.9 | 4.0 |
| 9.06 | 3-甲基苯酚 | — | 0.8 | 1.8 |
| 9.28 | 2-羟基苯甲醛 | 0.2 | 0.4 | 0.6 |
| 9.31 | 2-甲基苯酚 | 0.2 | 1.9 | 3.4 |
| 9.67 | 4-甲基苯酚 | — | 2.5 | 4.4 |
| 9.910 | 2-甲氧基苯酚 | 0.1 | 0.1 | 0.1 |
| 10.01 | 3-甲基苄腈 | — | — | 0.5 |
| 10.24 | 2-甲基苯腈 | — | — | 0.4 |
| 11.08 | 苯甲酸 | — | — | 0.5 |
| 14.30 | 联苯 | 0.2 | 0.2 | 0.2 |
| — | 其他 | 2.4 | 1.7 | 2.2 |
| M1 | M3 | M5 | ||
|---|---|---|---|---|
| 2.82 | 苯 | 63.1 | 39.2 | 10.1 |
| 4.35 | 1.2 | 20.9 | 42.1 | |
| 6.03 | 乙苯 | — | — | 0.8 |
| 7.88 | 0.4 | 5.1 | 10.6 | |
| 7.92 | 苯乙醚 | 0.5 | 0.6 | 0.5 |
| 8.09 | 28.2 | 22.7 | 17.8 | |
| 8.26 | 苯甲腈 | 3.5 | 3.9 | 4.0 |
| 9.06 | 3-甲基苯酚 | — | 0.8 | 1.8 |
| 9.28 | 2-羟基苯甲醛 | 0.2 | 0.4 | 0.6 |
| 9.31 | 2-甲基苯酚 | 0.2 | 1.9 | 3.4 |
| 9.67 | 4-甲基苯酚 | — | 2.5 | 4.4 |
| 9.910 | 2-甲氧基苯酚 | 0.1 | 0.1 | 0.1 |
| 10.01 | 3-甲基苄腈 | — | — | 0.5 |
| 10.24 | 2-甲基苯腈 | — | — | 0.4 |
| 11.08 | 苯甲酸 | — | — | 0.5 |
| 14.30 | 联苯 | 0.2 | 0.2 | 0.2 |
| — | 其他 | 2.4 | 1.7 | 2.2 |
| [1] | MAGAGULA Saneliswa, HAN Jiangze, LIU Xinying, et al. Targeting efficient biomass gasification[J]. Chinese Journal of Chemical Engineering, 2021, 33: 268-278. |
| [2] | LEIBBRANDT Nadia H, ABOYADE Akinwale O, KNOETZE Johannes H, et al. Process efficiency of biofuel production via gasification and Fischer-Tropsch synthesis[J]. Fuel, 2013, 109: 484-492. |
| [3] | 徐彬, 李嘉卿, 谢建军, 等. 等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究[J]. 燃料化学学报, 2021, 49(7): 967-977. |
| XU Bin, LI Jiaqing, XIE Jianjun, et al. Performance study on simultaneous tar removal and bio-syngas methanation by combining catalysis with nonthermal plasma[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 967-977. | |
| [4] | ZHU Fengsen, ZHANG Hao, YANG Haiping, et al. Plasma reforming of tar model compound in a rotating gliding arc reactor: Understanding the effects of CO2 and H2O addition[J]. Fuel, 2020, 259: 116271. |
| [5] | JAYANARASIMHAN Ananthanarasimhan, PATHAK Ram Mohan, SHIVAPUJI Anand M, et al. Tar formation in gasification systems: A holistic review of remediation approaches and removal methods[J]. ACS Omega, 2024, 9(2): 2060-2079. |
| [6] | 徐彬, 谢建军, 袁洪友, 等. 填充床介质阻挡放电脱除气化燃气中苯的研究[J]. 燃料化学学报, 2019, 47(4): 493-503. |
| XU Bin, XIE Jianjun, YUAN Hongyou, et al. Experimental study on benzene removal of fuel gas in a packed-bed dielectric barrier discharge reactor[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 493-503. | |
| [7] | 郭亚逢, 程世业, 鲁娜, 等. 电场局域增强介质阻挡放电对CO2氧化生物质焦油制合成气的影响[J]. 石油学报(石油加工), 2023, 39(5): 1124-1132. |
| GUO Yafeng, CHENG Shiye, LU Na, et al. Effect of local electric field enhanced dielectric barrier discharge on reforming biomass gasification tar and CO2 to syngas[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1124-1132. | |
| [8] | GUO Qizhi, QIN Yuhong, WANG Yuefeng, et al. Numerical study on kinetics of tar production and mechanism of benzene formation during corn straw gasification[J]. Journal of the Energy Institute, 2024, 114: 101635. |
| [9] | 卢岩, 李学琴, 李艳玲, 等. 生物质气化副产有机污染物脱除及防控技术现状[J]. 太阳能学报, 2023, 44(11): 399-405. |
| LU Yan, LI Xueqin, LI Yanling, et al. Current status of removal and control technologies for organic pollutants from biomass gasification by-products[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 399-405. | |
| [10] | LIU S Y, MEI D H, NAHIL M A, et al. Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts[J]. Fuel Processing Technology, 2017, 166: 269-275. |
| [11] | 董冰岩, 李贞栋, 王佩祥, 等. DBD等离子体耦合BiOI催化材料降解苯甲羟肟酸的特性与机制[J]. 化工进展, 2024, 43(3): 1565-1575. |
| DONG Bingyan, LI Zhendong, WANG Peixiang, et al. Performance and mechanism of the degradation of benzohydroxamic acid by DBD plasma-coupled BiOI catalytic materials[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1565-1575. | |
| [12] | TATAROVA E, BUNDALESKA N, Ph SARRETTE J, et al. Plasmas for environmental issues: From hydrogen production to 2D materials assembly[J]. Plasma Sources Science and Technology, 2014, 23(6): 063002. |
| [13] | 李超. 介质阻挡放电技术处理挥发性有机物的研究进展[J]. 化工进展, 2020, 39(5): 1964-1973. |
| LI Chao. Research progress on VOCs degradation using dielectric barrier discharge plasma.[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1964-1973. | |
| [14] | 代辉祥, 陆文静, YAWAR Abbas, 等. 双介质阻挡放电低温等离子体对模拟堆肥气体中氨气的去除[J]. 化工进展, 2020, 39(9): 3801-3809. |
| DAI Huixiang, LU Wenjing, YAWAR Abbas, et al. Removal of ammonia from simulated composting gas by double dielectric barrier discharge plasma[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3801-3809. | |
| [15] | LI Shijie, DANG Xiaoqing, YU Xin, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 2020, 388: 124275. |
| [16] | XU Bin, XIE Jianjun, WANG Nantao, et al. Plasma-enabled catalytic steam reforming of toluene as a biomass tar surrogate: Understanding the synergistic effect of plasma catalysis[J]. Chemical Engineering Journal, 2023, 464: 142696. |
| [17] | HE Wenyu, XU Bin, LANG Lin, et al. Exploring simultaneous upgrading and purification of biomass-gasified gases using plasma catalysis[J]. Catalysts, 2023, 13(4): 686. |
| [18] | SALEEM Faisal, KHOJA Asif Hussain, UMER Jamal, et al. Removal of benzene as a tar model compound from a gas mixture using non-thermal plasma dielectric barrier discharge reactor[J]. Journal of the Energy Institute, 2021, 96: 97-105. |
| [19] | WANG Yaoling, YANG Haiping, TU Xin. Plasma reforming of naphthalene as a tar model compound of biomass gasification[J]. Energy Conversion and Management, 2019, 187: 593-604. |
| [20] | ZHU Fengsen, LI Xiaodong, ZHANG Hao, et al. Destruction of toluene by rotating gliding arc discharge[J]. Fuel, 2016, 176: 78-85. |
| [21] | 王群, 臧鑫芝, 孙慧慧, 等. Mn基金属有机骨架(MOFs)催化剂制备及介质阻挡放电(DBD)等离子体协同催化降解甲苯[J]. 环境化学, 2023, 42(11): 3767-3778. |
| WANG Qun, ZANG Xinzhi, SUN Huihui, et al. Preparation of Mn-based metal-organic frameworks (MOFs) catalysts and its synergistic catalysis on toluene degradation with dielectric barrier discharge (DBD) plasma[J]. Environmental Chemistry, 2023, 42(11): 3767-3778. | |
| [22] | XU Bin, XIE Jianjun, LIU Huacai, et al. Experimental and kinetic modeling study of tar partial oxidative reforming by dielectric barrier discharge plasma using toluene as a model compound[J]. Chemical Engineering Journal, 2024, 479: 147533. |
| [23] | COLL Roberto, Joan SALVADÓ, FARRIOL Xavier, et al. Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation[J]. Fuel Processing Technology, 2001, 74(1): 19-31. |
| [24] | MEI Danhua, WANG Yaolin, LIU Shiyun, et al. Plasma reforming of biomass gasification tars using mixed naphthalene and toluene as model compounds[J]. Energy Conversion and Management, 2019, 195: 409-419. |
| [25] | LIU Lina, ZHANG Zhikun, Sonali DAS, et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review[J]. Applied Catalysis B: Environmental, 2019, 250: 250-272. |
| [26] | LIU Shiyun, MEI Danhua, WANG Li, et al. Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chemical Engineering Journal, 2017, 307: 793-802. |
| [27] | 李嘉卿, 徐彬, 王文博, 等. 等离子体催化甲烷干重整实验研究[J]. 燃料化学学报, 2021, 49(8): 1161-1172. |
| LI Jiaqing, XU Bin, WANG Wenbo, et al. Experimental study on dry reforming of methane by a plasma catalytic hybrid system[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1161-1172. | |
| [28] | KORTSHAGEN Uwe. Nonthermal plasma synthesis of nanocrystals: Fundamentals, applications, and future research needs[J]. Plasma Chemistry and Plasma Processing, 2016, 36(1): 73-84. |
| [29] | WU Junliang, XIA Qibin, WANG Haihui, et al. Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: Effect of water vapor[J]. Applied Catalysis B: Environmental, 2014, 156: 265-272. |
| [30] | Gaithersburg, Maryland: National Institute of Standards and Technology. NIST Chemical Kinetics Database[EB/OL]. (2015-09) [2024-06]. . |
| [31] | SU Yi, LUO Yonghao, CHEN Yi, et al. Experimental and numerical investigation of tar destruction under partial oxidation environment[J]. Fuel Processing Technology, 2011, 92(8): 1513-1524. |
| [32] | TRUSHKIN A N, KOCHETOV I V. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen[J]. Plasma Physics Reports, 2012, 38(5): 407-431. |
| [33] | ITIKAWA Yukikazu. Cross sections for electron collisions with oxygen molecules[J]. Journal of Physical and Chemical Reference Data, 2009, 38(1): 1-20. |
| [34] | GORDILLO-VÁZQUEZ F J. Air plasma kinetics under the influence of sprites[J]. Journal of Physics D: Applied Physics, 2008, 41(23): 234016. |
| [35] | XU Shaojun, KHALAF Pericles I, MARTIN Philip A, et al. CO2 dissociation in a packed-bed plasma reactor: Effects of operating conditions[J]. Plasma Sources Science and Technology, 2018, 27(7): 075009. |
| [36] | WANG Baowei, CHI Chunmei, XU Meng, et al. Plasma-catalytic removal of toluene over CeO2-MnO x catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 2017, 322: 679-692. |
| [37] | SALEEM Faisal, ZHANG Kui, HARVEY Adam. Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2019, 356: 1062-1069. |
| [38] | XU Ruiyang, KONG Xiangzhi, ZHANG Hao, et al. Destruction of gasification tar over Ni catalysts in a modified rotating gliding arc plasma reactor: Effect of catalyst position and nickel loading[J]. Fuel, 2021, 289: 119742. |
| [39] | PAN Wei, MENG Junguang, GU Tingting, et al. Plasma-catalytic steam reforming of benzene as a tar model compound over Ni-HAP and Ni-γAl2O3 catalysts: Insights into the importance of steam and catalyst support[J]. Fuel, 2023, 339: 127327. |
| [40] | LIU Lina, WANG Qiang, AHMAD Shakeel, et al. Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system[J]. Journal of the Energy Institute, 2018, 91(6): 927-939. |
| [41] | LIU Lina, WANG Qiang, SONG Jianwei, et al. Dry reforming of model biomass pyrolysis products to syngas by dielectric barrier discharge plasma[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10281-10293. |
| [42] | YU Liang, LI Xiaodong, TU Xin, et al. Decomposition of naphthalene by DC gliding arc gas discharge[J]. The Journal of Physical Chemistry A, 2010, 114(1): 360-368. |
| [43] | 张鹏, 梅丹华, 孙闵杰, 等. 水蒸气添加下介质阻挡放电CO2重整CH4反应研究[J]. 石油学报(石油加工), 2023, 39(5): 977-986. |
| ZHANG Peng, MEI Danhua, SUN Minjie, et al. Investigation on CH4 reforming with CO2 in dielectric barrier discharge in the presence of steam.[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 977-986. | |
| [44] | SUN Jing, WANG Qing, WANG Wenlong, et al. Plasma catalytic steam reforming of a model tar compound by microwave-metal discharges[J]. Fuel, 2018, 234: 1278-1284. |
| [1] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [2] | CHEN Shaowei, CHEN Yi, NIU Jiangqi, LIU Tianqi, HUANG Jianguo, CHEN Huanhao, FAN Xiaolei. Research progress and application prospects of dielectric barrier discharge plasma catalytic reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3175-3189. |
| [3] | JIANG Qiyi, DENG Xinyue, YUAN Yanting, ZHANG Yaqian, YANG Min, LI Weina, FAN Daidi. Advances in engineering design, optimization and application of targeted therapeutic proteins and peptides [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2407-2420. |
| [4] | DU Xinyue, CHEN Shengchun, QIAN Junfeng, HE Mingyang, CHEN Qun. Upgrading waste terephthalic acid into MOF materials for flame retardant application [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2777-2787. |
| [5] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| [6] | WU Fengming, LI Shuaiqi, DAI Chunjiang, HE Shihui, CHEN Xiang, SONG Wenji, FENG Ziping. Exploration of the performance of a steam generation system based on a high-temperature heat pump with R245fa [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 752-763. |
| [7] | GENG Qianhao, XU Xiaoyun, LI bingjing. Research progress in control technology for reaction heat of polyurethane grouting materials in mines [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 319-328. |
| [8] | HAO Jingyuan, QI Baojin, WEI Jinjia. Characteristics of in situ pyrolysis products of tar-rich coal in Yushen area under different pressures [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 268-281. |
| [9] | HU Xing, LIU Yi, DU Zexue. Research progress of catalyst for direct synthesis of epichlorohydrin from 3-chloropropylene [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 325-334. |
| [10] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
| [11] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
| [12] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
| [13] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
| [14] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
| [15] | QU Chao, LIU Junhong, JIA Bin, HUANG Yong. Effect of waterborne acrylic resin on the properties of PBAT/starch composite materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3268-3276. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |